{"title":"元胞环面嵌入的等变k理论","authors":"Alexis Tchoudjem , Vikraman Uma","doi":"10.1016/j.bulsci.2025.103717","DOIUrl":null,"url":null,"abstract":"<div><div>In this article we describe the <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>c</mi><mi>o</mi><mi>m</mi><mi>p</mi></mrow></msub><mo>×</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>c</mi><mi>o</mi><mi>m</mi><mi>p</mi></mrow></msub></math></span>-equivariant topological <em>K</em>-ring of a <em>cellular</em> toroidal embedding <span><math><mi>X</mi></math></span> of a complex connected reductive algebraic group <em>G</em>. In particular, our results extend the results in <span><span>[31]</span></span> and <span><span>[32]</span></span> on the regular embeddings of <em>G</em>, to the equivariant topological <em>K</em>-ring of a larger class of (possibly singular) cellular toroidal embeddings. They are also a topological analogue of the results in <span><span>[14]</span></span> on the operational equivariant algebraic <em>K</em>-ring, for cellular toroidal embeddings.</div></div>","PeriodicalId":55313,"journal":{"name":"Bulletin des Sciences Mathematiques","volume":"206 ","pages":"Article 103717"},"PeriodicalIF":0.9000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Equivariant K-theory of cellular toroidal embeddings\",\"authors\":\"Alexis Tchoudjem , Vikraman Uma\",\"doi\":\"10.1016/j.bulsci.2025.103717\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this article we describe the <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>c</mi><mi>o</mi><mi>m</mi><mi>p</mi></mrow></msub><mo>×</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>c</mi><mi>o</mi><mi>m</mi><mi>p</mi></mrow></msub></math></span>-equivariant topological <em>K</em>-ring of a <em>cellular</em> toroidal embedding <span><math><mi>X</mi></math></span> of a complex connected reductive algebraic group <em>G</em>. In particular, our results extend the results in <span><span>[31]</span></span> and <span><span>[32]</span></span> on the regular embeddings of <em>G</em>, to the equivariant topological <em>K</em>-ring of a larger class of (possibly singular) cellular toroidal embeddings. They are also a topological analogue of the results in <span><span>[14]</span></span> on the operational equivariant algebraic <em>K</em>-ring, for cellular toroidal embeddings.</div></div>\",\"PeriodicalId\":55313,\"journal\":{\"name\":\"Bulletin des Sciences Mathematiques\",\"volume\":\"206 \",\"pages\":\"Article 103717\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin des Sciences Mathematiques\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0007449725001435\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin des Sciences Mathematiques","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0007449725001435","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Equivariant K-theory of cellular toroidal embeddings
In this article we describe the -equivariant topological K-ring of a cellular toroidal embedding of a complex connected reductive algebraic group G. In particular, our results extend the results in [31] and [32] on the regular embeddings of G, to the equivariant topological K-ring of a larger class of (possibly singular) cellular toroidal embeddings. They are also a topological analogue of the results in [14] on the operational equivariant algebraic K-ring, for cellular toroidal embeddings.