元胞环面嵌入的等变k理论

IF 0.9 3区 数学 Q2 MATHEMATICS, APPLIED
Alexis Tchoudjem , Vikraman Uma
{"title":"元胞环面嵌入的等变k理论","authors":"Alexis Tchoudjem ,&nbsp;Vikraman Uma","doi":"10.1016/j.bulsci.2025.103717","DOIUrl":null,"url":null,"abstract":"<div><div>In this article we describe the <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>c</mi><mi>o</mi><mi>m</mi><mi>p</mi></mrow></msub><mo>×</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>c</mi><mi>o</mi><mi>m</mi><mi>p</mi></mrow></msub></math></span>-equivariant topological <em>K</em>-ring of a <em>cellular</em> toroidal embedding <span><math><mi>X</mi></math></span> of a complex connected reductive algebraic group <em>G</em>. In particular, our results extend the results in <span><span>[31]</span></span> and <span><span>[32]</span></span> on the regular embeddings of <em>G</em>, to the equivariant topological <em>K</em>-ring of a larger class of (possibly singular) cellular toroidal embeddings. They are also a topological analogue of the results in <span><span>[14]</span></span> on the operational equivariant algebraic <em>K</em>-ring, for cellular toroidal embeddings.</div></div>","PeriodicalId":55313,"journal":{"name":"Bulletin des Sciences Mathematiques","volume":"206 ","pages":"Article 103717"},"PeriodicalIF":0.9000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Equivariant K-theory of cellular toroidal embeddings\",\"authors\":\"Alexis Tchoudjem ,&nbsp;Vikraman Uma\",\"doi\":\"10.1016/j.bulsci.2025.103717\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this article we describe the <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>c</mi><mi>o</mi><mi>m</mi><mi>p</mi></mrow></msub><mo>×</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>c</mi><mi>o</mi><mi>m</mi><mi>p</mi></mrow></msub></math></span>-equivariant topological <em>K</em>-ring of a <em>cellular</em> toroidal embedding <span><math><mi>X</mi></math></span> of a complex connected reductive algebraic group <em>G</em>. In particular, our results extend the results in <span><span>[31]</span></span> and <span><span>[32]</span></span> on the regular embeddings of <em>G</em>, to the equivariant topological <em>K</em>-ring of a larger class of (possibly singular) cellular toroidal embeddings. They are also a topological analogue of the results in <span><span>[14]</span></span> on the operational equivariant algebraic <em>K</em>-ring, for cellular toroidal embeddings.</div></div>\",\"PeriodicalId\":55313,\"journal\":{\"name\":\"Bulletin des Sciences Mathematiques\",\"volume\":\"206 \",\"pages\":\"Article 103717\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin des Sciences Mathematiques\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0007449725001435\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin des Sciences Mathematiques","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0007449725001435","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文描述了复连通代数群G的元胞环面嵌入X的Gcomp×Gcomp-equivariant拓扑k环,特别地,我们的结果将[31]和[32]中关于G的正则嵌入的结果推广到更大的(可能是奇异的)元胞环面嵌入的等变拓扑k环。对于元胞环面嵌入,它们也是[14]在运算等变代数k环上的结果的拓扑模拟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Equivariant K-theory of cellular toroidal embeddings
In this article we describe the Gcomp×Gcomp-equivariant topological K-ring of a cellular toroidal embedding X of a complex connected reductive algebraic group G. In particular, our results extend the results in [31] and [32] on the regular embeddings of G, to the equivariant topological K-ring of a larger class of (possibly singular) cellular toroidal embeddings. They are also a topological analogue of the results in [14] on the operational equivariant algebraic K-ring, for cellular toroidal embeddings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
7.70%
发文量
71
审稿时长
6-12 weeks
期刊介绍: Founded in 1870, by Gaston Darboux, the Bulletin publishes original articles covering all branches of pure mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信