富硅砂的化学-机械老化和电动效应

IF 8.4 1区 工程技术 Q1 ENGINEERING, GEOLOGICAL
Miguel Castilla-Barbosa , Manuel Ocampo-Terreros , Orlando Rincón
{"title":"富硅砂的化学-机械老化和电动效应","authors":"Miguel Castilla-Barbosa ,&nbsp;Manuel Ocampo-Terreros ,&nbsp;Orlando Rincón","doi":"10.1016/j.enggeo.2025.108307","DOIUrl":null,"url":null,"abstract":"<div><div>Sands aging significantly influences their shear strength through a combination of mechanical and chemical interactions. While the effects of mechanical aging — such as particle rearrangement and interlocking — are well understood, the contribution of chemical processes remains less explored. This study examines the coupled chemo-mechanical aging mechanisms that govern sand behavior. Through X-ray diffraction and zeta potential analysis, the influence of mineralogical composition and electrokinetic interactions under varying pH conditions is quantified. Unconfined compression tests indicate that electrochemical attraction, particularly in silica-rich environments, enhances compressive strength by up to 3 times over six months. Statistical validation confirms significant strength gains across different sand types, highlighting the role of alkali-silica reactions. This findings challenge conventional predictive models of long-term granular soil behavior, offering a new perspective for geotechnical applications influenced by time dependence.</div></div>","PeriodicalId":11567,"journal":{"name":"Engineering Geology","volume":"357 ","pages":"Article 108307"},"PeriodicalIF":8.4000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chemo-mechanical aging and electrokinetic effects on silica-rich sands\",\"authors\":\"Miguel Castilla-Barbosa ,&nbsp;Manuel Ocampo-Terreros ,&nbsp;Orlando Rincón\",\"doi\":\"10.1016/j.enggeo.2025.108307\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Sands aging significantly influences their shear strength through a combination of mechanical and chemical interactions. While the effects of mechanical aging — such as particle rearrangement and interlocking — are well understood, the contribution of chemical processes remains less explored. This study examines the coupled chemo-mechanical aging mechanisms that govern sand behavior. Through X-ray diffraction and zeta potential analysis, the influence of mineralogical composition and electrokinetic interactions under varying pH conditions is quantified. Unconfined compression tests indicate that electrochemical attraction, particularly in silica-rich environments, enhances compressive strength by up to 3 times over six months. Statistical validation confirms significant strength gains across different sand types, highlighting the role of alkali-silica reactions. This findings challenge conventional predictive models of long-term granular soil behavior, offering a new perspective for geotechnical applications influenced by time dependence.</div></div>\",\"PeriodicalId\":11567,\"journal\":{\"name\":\"Engineering Geology\",\"volume\":\"357 \",\"pages\":\"Article 108307\"},\"PeriodicalIF\":8.4000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Geology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S001379522500403X\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Geology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S001379522500403X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

摘要

砂的老化通过力学和化学相互作用对其抗剪强度产生显著影响。虽然机械老化的影响——如粒子重排和联锁——已经被很好地理解,但化学过程的贡献仍然很少被探索。本研究探讨了控制砂粒行为的化学-力学耦合老化机制。通过x射线衍射和zeta电位分析,量化了不同pH条件下矿物组成和电动力学相互作用的影响。无侧限压缩试验表明,电化学吸引力,特别是在富含硅的环境中,在6个月内可将抗压强度提高3倍。统计验证证实了不同砂类型的强度显著增加,突出了碱-硅反应的作用。这一发现挑战了传统的长期颗粒土行为预测模型,为受时间依赖性影响的岩土工程应用提供了新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Chemo-mechanical aging and electrokinetic effects on silica-rich sands
Sands aging significantly influences their shear strength through a combination of mechanical and chemical interactions. While the effects of mechanical aging — such as particle rearrangement and interlocking — are well understood, the contribution of chemical processes remains less explored. This study examines the coupled chemo-mechanical aging mechanisms that govern sand behavior. Through X-ray diffraction and zeta potential analysis, the influence of mineralogical composition and electrokinetic interactions under varying pH conditions is quantified. Unconfined compression tests indicate that electrochemical attraction, particularly in silica-rich environments, enhances compressive strength by up to 3 times over six months. Statistical validation confirms significant strength gains across different sand types, highlighting the role of alkali-silica reactions. This findings challenge conventional predictive models of long-term granular soil behavior, offering a new perspective for geotechnical applications influenced by time dependence.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Engineering Geology
Engineering Geology 地学-地球科学综合
CiteScore
13.70
自引率
12.20%
发文量
327
审稿时长
5.6 months
期刊介绍: Engineering Geology, an international interdisciplinary journal, serves as a bridge between earth sciences and engineering, focusing on geological and geotechnical engineering. It welcomes studies with relevance to engineering, environmental concerns, and safety, catering to engineering geologists with backgrounds in geology or civil/mining engineering. Topics include applied geomorphology, structural geology, geophysics, geochemistry, environmental geology, hydrogeology, land use planning, natural hazards, remote sensing, soil and rock mechanics, and applied geotechnical engineering. The journal provides a platform for research at the intersection of geology and engineering disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信