可持续土地利用的机器学习方法:将马尔可夫链和XGBoost整合到泰国的黑加仑种植中

IF 5.6 Q1 ENVIRONMENTAL SCIENCES
Sasarose Jaijit , Punpiti Piamsa-nga , Aphisak Witthayapraphakorn
{"title":"可持续土地利用的机器学习方法:将马尔可夫链和XGBoost整合到泰国的黑加仑种植中","authors":"Sasarose Jaijit ,&nbsp;Punpiti Piamsa-nga ,&nbsp;Aphisak Witthayapraphakorn","doi":"10.1016/j.indic.2025.100896","DOIUrl":null,"url":null,"abstract":"<div><div>This study examined the historical and economic potential of black galingale (<em>Kaempferia parviflora</em>) cultivation in Thailand. Using a novel hybrid machine learning approach—Markov chain modeling for temporal dynamics and XGBoost for predictive classification—we generated unbiased suitability labels and achieved highly accurate classification. The model identified 22 districts across 10 provinces as highly or moderately suitable for cultivation. Despite challenges in soil quality such as poor root penetration, unfavorable soil texture and high jarosite levels, these areas were identified as viable using spatial data and probabilistic modeling. Feature importance analysis revealed adoption percentage, jarosite depth, and elevation as key drivers of suitability. Findings aligned with Thailand's national herbal development agenda and provided a data-driven foundation for sustainable land-use policies.</div></div>","PeriodicalId":36171,"journal":{"name":"Environmental and Sustainability Indicators","volume":"28 ","pages":"Article 100896"},"PeriodicalIF":5.6000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A machine learning approach to sustainable land use: Integrating Markov chains and XGBoost for black galingale cultivation in Thailand\",\"authors\":\"Sasarose Jaijit ,&nbsp;Punpiti Piamsa-nga ,&nbsp;Aphisak Witthayapraphakorn\",\"doi\":\"10.1016/j.indic.2025.100896\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study examined the historical and economic potential of black galingale (<em>Kaempferia parviflora</em>) cultivation in Thailand. Using a novel hybrid machine learning approach—Markov chain modeling for temporal dynamics and XGBoost for predictive classification—we generated unbiased suitability labels and achieved highly accurate classification. The model identified 22 districts across 10 provinces as highly or moderately suitable for cultivation. Despite challenges in soil quality such as poor root penetration, unfavorable soil texture and high jarosite levels, these areas were identified as viable using spatial data and probabilistic modeling. Feature importance analysis revealed adoption percentage, jarosite depth, and elevation as key drivers of suitability. Findings aligned with Thailand's national herbal development agenda and provided a data-driven foundation for sustainable land-use policies.</div></div>\",\"PeriodicalId\":36171,\"journal\":{\"name\":\"Environmental and Sustainability Indicators\",\"volume\":\"28 \",\"pages\":\"Article 100896\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental and Sustainability Indicators\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2665972725003174\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental and Sustainability Indicators","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2665972725003174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本研究考察了泰国黑高卢(Kaempferia parviflora)栽培的历史和经济潜力。使用一种新的混合机器学习方法——马尔可夫链建模用于时间动态,XGBoost用于预测分类——我们生成了无偏适用性标签,并实现了高度准确的分类。该模型确定了10个省的22个地区高度或中度适合种植。尽管存在土壤质量方面的挑战,如根系穿透性差、土壤质地不利和黄钾铁矾含量高,但利用空间数据和概率模型确定了这些地区是可行的。特征重要性分析显示,采用率、黄钾铁矾深度和海拔高度是适宜性的关键驱动因素。研究结果与泰国国家草药发展议程一致,并为可持续土地利用政策提供了数据驱动的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A machine learning approach to sustainable land use: Integrating Markov chains and XGBoost for black galingale cultivation in Thailand
This study examined the historical and economic potential of black galingale (Kaempferia parviflora) cultivation in Thailand. Using a novel hybrid machine learning approach—Markov chain modeling for temporal dynamics and XGBoost for predictive classification—we generated unbiased suitability labels and achieved highly accurate classification. The model identified 22 districts across 10 provinces as highly or moderately suitable for cultivation. Despite challenges in soil quality such as poor root penetration, unfavorable soil texture and high jarosite levels, these areas were identified as viable using spatial data and probabilistic modeling. Feature importance analysis revealed adoption percentage, jarosite depth, and elevation as key drivers of suitability. Findings aligned with Thailand's national herbal development agenda and provided a data-driven foundation for sustainable land-use policies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental and Sustainability Indicators
Environmental and Sustainability Indicators Environmental Science-Environmental Science (miscellaneous)
CiteScore
7.80
自引率
2.30%
发文量
49
审稿时长
57 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信