面向开源基金会模式生态系统:影响评估框架与促进机制

IF 13.3 1区 管理学 Q1 BUSINESS
Jincheng Shi , Shan Jiang
{"title":"面向开源基金会模式生态系统:影响评估框架与促进机制","authors":"Jincheng Shi ,&nbsp;Shan Jiang","doi":"10.1016/j.techfore.2025.124328","DOIUrl":null,"url":null,"abstract":"<div><div>Open-source foundation models cultivate complex innovation ecosystems that render traditional, project-centric evaluation frameworks inadequate. To address this gap, our study develops and validates a three-level framework for assessing ecosystem-level impact and identifying its enhancement mechanisms. Grounded in technology diffusion theory, we conduct a mixed-methods analysis of 14 leading models, using data from Hugging Face, GitHub, and X (formerly Twitter). Our findings reveal that while the initial impact of these models is balanced, significant gaps emerge at the secondary (derivative innovation) and tertiary (global influence) levels. We term this challenge the “climbing effect”—the difficulty of transitioning impact across these levels—and identify specific technical and strategic control points that facilitate this progression. Theoretically, this study shifts the unit of analysis from individual projects to broader ecosystems, challenges the assumption of “smooth diffusion,” and introduces control point theory to the open-source context. Practically, our findings offer actionable strategies for developers and an evidence-based framework for policymakers to foster a more prosperous open-source AI landscape.</div></div>","PeriodicalId":48454,"journal":{"name":"Technological Forecasting and Social Change","volume":"221 ","pages":"Article 124328"},"PeriodicalIF":13.3000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Toward open-source foundation model ecosystem: Impact evaluation framework and promotion mechanism\",\"authors\":\"Jincheng Shi ,&nbsp;Shan Jiang\",\"doi\":\"10.1016/j.techfore.2025.124328\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Open-source foundation models cultivate complex innovation ecosystems that render traditional, project-centric evaluation frameworks inadequate. To address this gap, our study develops and validates a three-level framework for assessing ecosystem-level impact and identifying its enhancement mechanisms. Grounded in technology diffusion theory, we conduct a mixed-methods analysis of 14 leading models, using data from Hugging Face, GitHub, and X (formerly Twitter). Our findings reveal that while the initial impact of these models is balanced, significant gaps emerge at the secondary (derivative innovation) and tertiary (global influence) levels. We term this challenge the “climbing effect”—the difficulty of transitioning impact across these levels—and identify specific technical and strategic control points that facilitate this progression. Theoretically, this study shifts the unit of analysis from individual projects to broader ecosystems, challenges the assumption of “smooth diffusion,” and introduces control point theory to the open-source context. Practically, our findings offer actionable strategies for developers and an evidence-based framework for policymakers to foster a more prosperous open-source AI landscape.</div></div>\",\"PeriodicalId\":48454,\"journal\":{\"name\":\"Technological Forecasting and Social Change\",\"volume\":\"221 \",\"pages\":\"Article 124328\"},\"PeriodicalIF\":13.3000,\"publicationDate\":\"2025-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Technological Forecasting and Social Change\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0040162525003592\",\"RegionNum\":1,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BUSINESS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technological Forecasting and Social Change","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040162525003592","RegionNum":1,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS","Score":null,"Total":0}
引用次数: 0

摘要

开源基础模型培养了复杂的创新生态系统,使传统的、以项目为中心的评估框架变得不充分。为了解决这一差距,我们的研究开发并验证了一个三级框架,用于评估生态系统层面的影响并确定其增强机制。在技术扩散理论的基础上,我们使用来自hug Face、GitHub和X(以前的Twitter)的数据,对14个主要模型进行了混合方法分析。我们的研究结果表明,虽然这些模型的初始影响是平衡的,但在二级(衍生创新)和三级(全球影响)水平上出现了显著差距。我们将这种挑战称为“攀爬效应”——跨越这些层次的过渡影响的困难——并确定促进这种进展的具体技术和战略控制点。从理论上讲,本研究将分析单元从单个项目转移到更广泛的生态系统,挑战了“平滑扩散”的假设,并将控制点理论引入了开源环境。实际上,我们的研究结果为开发人员提供了可操作的策略,并为政策制定者提供了一个基于证据的框架,以促进更繁荣的开源人工智能环境。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Toward open-source foundation model ecosystem: Impact evaluation framework and promotion mechanism
Open-source foundation models cultivate complex innovation ecosystems that render traditional, project-centric evaluation frameworks inadequate. To address this gap, our study develops and validates a three-level framework for assessing ecosystem-level impact and identifying its enhancement mechanisms. Grounded in technology diffusion theory, we conduct a mixed-methods analysis of 14 leading models, using data from Hugging Face, GitHub, and X (formerly Twitter). Our findings reveal that while the initial impact of these models is balanced, significant gaps emerge at the secondary (derivative innovation) and tertiary (global influence) levels. We term this challenge the “climbing effect”—the difficulty of transitioning impact across these levels—and identify specific technical and strategic control points that facilitate this progression. Theoretically, this study shifts the unit of analysis from individual projects to broader ecosystems, challenges the assumption of “smooth diffusion,” and introduces control point theory to the open-source context. Practically, our findings offer actionable strategies for developers and an evidence-based framework for policymakers to foster a more prosperous open-source AI landscape.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
21.30
自引率
10.80%
发文量
813
期刊介绍: Technological Forecasting and Social Change is a prominent platform for individuals engaged in the methodology and application of technological forecasting and future studies as planning tools, exploring the interconnectedness of social, environmental, and technological factors. In addition to serving as a key forum for these discussions, we offer numerous benefits for authors, including complimentary PDFs, a generous copyright policy, exclusive discounts on Elsevier publications, and more.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信