Yuan Xue , Shuting Bai , Yating Wang , Jiaxing Feng , Kun Xiong , Xue Tang , Chunting He , Yanhua Xu , Hongling Yu , Tianyi Luo , Qing Lin , Xun Sun , Ling Zhang , Zhirong Zhang , Tao Gong
{"title":"级联靶向递送平台增强抗原交叉呈递和STING激活,实现持久的细胞免疫","authors":"Yuan Xue , Shuting Bai , Yating Wang , Jiaxing Feng , Kun Xiong , Xue Tang , Chunting He , Yanhua Xu , Hongling Yu , Tianyi Luo , Qing Lin , Xun Sun , Ling Zhang , Zhirong Zhang , Tao Gong","doi":"10.1016/j.bioactmat.2025.08.033","DOIUrl":null,"url":null,"abstract":"<div><div>Achieving robust and durable cellular immunity remains a key challenge in the development of subunit vaccines, primarily due to inefficient antigen cross-presentation and inadequate immune activation. Here, we engineered a series of nano-emulsions by conjugating human serum albumin (HSA) with fatty acids of varying chain lengths. Through systematic screening, the palmitic acid–modified nano-emulsion was identified as the most effective carrier, exhibiting intrinsic self-adjuvant properties and a strong capacity to elicit cellular immune responses. Notably, this formulation enables cascade-targeted delivery, trafficking sequentially from lymph nodes to antigen-presenting cells (APCs), and ultimately to the endoplasmic reticulum (ER). Upon co-delivery of the model antigen ovalbumin (OVA) and a stimulator of interferon genes (STING) agonist, the nano-emulsion facilitates both efficient antigen cross-presentation and precise intracellular activation of the STING pathway. This synergistic mechanism significantly enhances CD8<sup>+</sup> T cell responses and promotes durable memory formation, resulting in potent antitumor efficacy in murine models. Collectively, this study presents a safe and versatile nano-emulsion platform that overcomes key barriers in subunit vaccine delivery, offering a promising strategy for next-generation vaccine design.</div></div>","PeriodicalId":8762,"journal":{"name":"Bioactive Materials","volume":"54 ","pages":"Pages 584-601"},"PeriodicalIF":18.0000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cascade-targeted delivery platform enhances antigen cross-presentation and STING activation for durable cellular immunity\",\"authors\":\"Yuan Xue , Shuting Bai , Yating Wang , Jiaxing Feng , Kun Xiong , Xue Tang , Chunting He , Yanhua Xu , Hongling Yu , Tianyi Luo , Qing Lin , Xun Sun , Ling Zhang , Zhirong Zhang , Tao Gong\",\"doi\":\"10.1016/j.bioactmat.2025.08.033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Achieving robust and durable cellular immunity remains a key challenge in the development of subunit vaccines, primarily due to inefficient antigen cross-presentation and inadequate immune activation. Here, we engineered a series of nano-emulsions by conjugating human serum albumin (HSA) with fatty acids of varying chain lengths. Through systematic screening, the palmitic acid–modified nano-emulsion was identified as the most effective carrier, exhibiting intrinsic self-adjuvant properties and a strong capacity to elicit cellular immune responses. Notably, this formulation enables cascade-targeted delivery, trafficking sequentially from lymph nodes to antigen-presenting cells (APCs), and ultimately to the endoplasmic reticulum (ER). Upon co-delivery of the model antigen ovalbumin (OVA) and a stimulator of interferon genes (STING) agonist, the nano-emulsion facilitates both efficient antigen cross-presentation and precise intracellular activation of the STING pathway. This synergistic mechanism significantly enhances CD8<sup>+</sup> T cell responses and promotes durable memory formation, resulting in potent antitumor efficacy in murine models. Collectively, this study presents a safe and versatile nano-emulsion platform that overcomes key barriers in subunit vaccine delivery, offering a promising strategy for next-generation vaccine design.</div></div>\",\"PeriodicalId\":8762,\"journal\":{\"name\":\"Bioactive Materials\",\"volume\":\"54 \",\"pages\":\"Pages 584-601\"},\"PeriodicalIF\":18.0000,\"publicationDate\":\"2025-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioactive Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2452199X25003950\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioactive Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452199X25003950","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Cascade-targeted delivery platform enhances antigen cross-presentation and STING activation for durable cellular immunity
Achieving robust and durable cellular immunity remains a key challenge in the development of subunit vaccines, primarily due to inefficient antigen cross-presentation and inadequate immune activation. Here, we engineered a series of nano-emulsions by conjugating human serum albumin (HSA) with fatty acids of varying chain lengths. Through systematic screening, the palmitic acid–modified nano-emulsion was identified as the most effective carrier, exhibiting intrinsic self-adjuvant properties and a strong capacity to elicit cellular immune responses. Notably, this formulation enables cascade-targeted delivery, trafficking sequentially from lymph nodes to antigen-presenting cells (APCs), and ultimately to the endoplasmic reticulum (ER). Upon co-delivery of the model antigen ovalbumin (OVA) and a stimulator of interferon genes (STING) agonist, the nano-emulsion facilitates both efficient antigen cross-presentation and precise intracellular activation of the STING pathway. This synergistic mechanism significantly enhances CD8+ T cell responses and promotes durable memory formation, resulting in potent antitumor efficacy in murine models. Collectively, this study presents a safe and versatile nano-emulsion platform that overcomes key barriers in subunit vaccine delivery, offering a promising strategy for next-generation vaccine design.
Bioactive MaterialsBiochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
28.00
自引率
6.30%
发文量
436
审稿时长
20 days
期刊介绍:
Bioactive Materials is a peer-reviewed research publication that focuses on advancements in bioactive materials. The journal accepts research papers, reviews, and rapid communications in the field of next-generation biomaterials that interact with cells, tissues, and organs in various living organisms.
The primary goal of Bioactive Materials is to promote the science and engineering of biomaterials that exhibit adaptiveness to the biological environment. These materials are specifically designed to stimulate or direct appropriate cell and tissue responses or regulate interactions with microorganisms.
The journal covers a wide range of bioactive materials, including those that are engineered or designed in terms of their physical form (e.g. particulate, fiber), topology (e.g. porosity, surface roughness), or dimensions (ranging from macro to nano-scales). Contributions are sought from the following categories of bioactive materials:
Bioactive metals and alloys
Bioactive inorganics: ceramics, glasses, and carbon-based materials
Bioactive polymers and gels
Bioactive materials derived from natural sources
Bioactive composites
These materials find applications in human and veterinary medicine, such as implants, tissue engineering scaffolds, cell/drug/gene carriers, as well as imaging and sensing devices.