扭转角工程对二维石墨烯半封装单层β-铋的热导率调制

IF 2.6 3区 工程技术 Q2 ENGINEERING, MECHANICAL
Jiangnan Song , Tingting Miao , Meng An , Dongsheng Chen
{"title":"扭转角工程对二维石墨烯半封装单层β-铋的热导率调制","authors":"Jiangnan Song ,&nbsp;Tingting Miao ,&nbsp;Meng An ,&nbsp;Dongsheng Chen","doi":"10.1016/j.ijheatfluidflow.2025.110033","DOIUrl":null,"url":null,"abstract":"<div><div>Two-dimensional (2D) <em>β</em>-bismuthene, characterized by intrinsically low thermal conductivity and excellent optoelectronic properties, is a promising material for thermoelectric and nanoelectronic applications. Nevertheless, its thermal transport behavior in heterostructures remains insufficiently understood. In this work, we investigate the twist-angle-dependent thermal transport in graphene semi-encapsulated monolayer <em>β</em>-bismuthene using non-equilibrium molecular dynamics simulations. The results show that graphene encapsulation substantially enhances the in-plane thermal conductivity of <em>β</em>-bismuthene layer in graphene-semi-encapsulated heterostructures, with a maximum increase of 180.90 % compared to pristine monolayer <em>β</em>-bismuthene. As the twist angle increases from 0° to 10.89°, the thermal conductivity decreases monotonically by up to 13.80 %. Meanwhile, the interface thermal resistance increases from 2.03 × 10<sup>−7</sup> to 2.19 × 10<sup>−7</sup> Km<sup>2</sup>W<sup>−1</sup>, reflecting weakened interlayer coupling. Phonon density of states and transmission spectra analyses indicate that low-frequency phonon softening and phonon localization are responsible for the reduction in thermal conductivity. Stress analysis further reveals that higher twist angles induce stronger interfacial stress concentration, with the average atomic stress increasing by ∼12.30 %, thereby enhancing phonon scattering. Potential energy surface calculations show that the interfacial energy variation decreases significantly from 0.62 meV to 0.13 meV with increasing twist angle, confirming the progressive weakening of vdW interfacial coupling. Overall, this study provides microscopic insights into thermal transport modulation in graphene/<em>β</em>-bismuthene heterostructures and offers guidance for designing advanced thermal management materials based on two-dimensional <em>β</em>-bismuthene.</div></div>","PeriodicalId":335,"journal":{"name":"International Journal of Heat and Fluid Flow","volume":"117 ","pages":"Article 110033"},"PeriodicalIF":2.6000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modulation of thermal conductivity in graphene semi-encapsulated monolayer 2D β-bismuthene through twist angle engineering\",\"authors\":\"Jiangnan Song ,&nbsp;Tingting Miao ,&nbsp;Meng An ,&nbsp;Dongsheng Chen\",\"doi\":\"10.1016/j.ijheatfluidflow.2025.110033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Two-dimensional (2D) <em>β</em>-bismuthene, characterized by intrinsically low thermal conductivity and excellent optoelectronic properties, is a promising material for thermoelectric and nanoelectronic applications. Nevertheless, its thermal transport behavior in heterostructures remains insufficiently understood. In this work, we investigate the twist-angle-dependent thermal transport in graphene semi-encapsulated monolayer <em>β</em>-bismuthene using non-equilibrium molecular dynamics simulations. The results show that graphene encapsulation substantially enhances the in-plane thermal conductivity of <em>β</em>-bismuthene layer in graphene-semi-encapsulated heterostructures, with a maximum increase of 180.90 % compared to pristine monolayer <em>β</em>-bismuthene. As the twist angle increases from 0° to 10.89°, the thermal conductivity decreases monotonically by up to 13.80 %. Meanwhile, the interface thermal resistance increases from 2.03 × 10<sup>−7</sup> to 2.19 × 10<sup>−7</sup> Km<sup>2</sup>W<sup>−1</sup>, reflecting weakened interlayer coupling. Phonon density of states and transmission spectra analyses indicate that low-frequency phonon softening and phonon localization are responsible for the reduction in thermal conductivity. Stress analysis further reveals that higher twist angles induce stronger interfacial stress concentration, with the average atomic stress increasing by ∼12.30 %, thereby enhancing phonon scattering. Potential energy surface calculations show that the interfacial energy variation decreases significantly from 0.62 meV to 0.13 meV with increasing twist angle, confirming the progressive weakening of vdW interfacial coupling. Overall, this study provides microscopic insights into thermal transport modulation in graphene/<em>β</em>-bismuthene heterostructures and offers guidance for designing advanced thermal management materials based on two-dimensional <em>β</em>-bismuthene.</div></div>\",\"PeriodicalId\":335,\"journal\":{\"name\":\"International Journal of Heat and Fluid Flow\",\"volume\":\"117 \",\"pages\":\"Article 110033\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Heat and Fluid Flow\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0142727X25002917\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Heat and Fluid Flow","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142727X25002917","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

二维(2D) β-铋烯具有固有的低导热性和优异的光电性能,是一种很有前途的热电和纳米电子材料。然而,其在异质结构中的热输运行为仍未得到充分的了解。在这项工作中,我们利用非平衡分子动力学模拟研究了石墨烯半封装单层β-铋中与扭转角相关的热输运。结果表明,石墨烯包封显著提高了半包封异质结构中β-铋层的面内导热系数,与原始单层β-铋层相比,最大导热系数提高了180.90%。当扭转角从0°增加到10.89°时,导热系数单调降低13.80%。同时,界面热阻从2.03 × 10−7增加到2.19 × 10−7 Km2W−1,反映层间耦合减弱。声子态密度和透射谱分析表明,低频声子软化和声子局部化是导致导热系数降低的原因。应力分析进一步表明,较高的扭转角会引起更强的界面应力集中,平均原子应力增加约12.30%,从而增强声子散射。势能面计算表明,随着扭转角的增加,界面能变化从0.62 meV显著减小到0.13 meV,证实了vdW界面耦合的逐渐减弱。总的来说,这项研究提供了石墨烯/β-铋异质结构中热传输调制的微观见解,并为设计基于二维β-铋的先进热管理材料提供了指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modulation of thermal conductivity in graphene semi-encapsulated monolayer 2D β-bismuthene through twist angle engineering
Two-dimensional (2D) β-bismuthene, characterized by intrinsically low thermal conductivity and excellent optoelectronic properties, is a promising material for thermoelectric and nanoelectronic applications. Nevertheless, its thermal transport behavior in heterostructures remains insufficiently understood. In this work, we investigate the twist-angle-dependent thermal transport in graphene semi-encapsulated monolayer β-bismuthene using non-equilibrium molecular dynamics simulations. The results show that graphene encapsulation substantially enhances the in-plane thermal conductivity of β-bismuthene layer in graphene-semi-encapsulated heterostructures, with a maximum increase of 180.90 % compared to pristine monolayer β-bismuthene. As the twist angle increases from 0° to 10.89°, the thermal conductivity decreases monotonically by up to 13.80 %. Meanwhile, the interface thermal resistance increases from 2.03 × 10−7 to 2.19 × 10−7 Km2W−1, reflecting weakened interlayer coupling. Phonon density of states and transmission spectra analyses indicate that low-frequency phonon softening and phonon localization are responsible for the reduction in thermal conductivity. Stress analysis further reveals that higher twist angles induce stronger interfacial stress concentration, with the average atomic stress increasing by ∼12.30 %, thereby enhancing phonon scattering. Potential energy surface calculations show that the interfacial energy variation decreases significantly from 0.62 meV to 0.13 meV with increasing twist angle, confirming the progressive weakening of vdW interfacial coupling. Overall, this study provides microscopic insights into thermal transport modulation in graphene/β-bismuthene heterostructures and offers guidance for designing advanced thermal management materials based on two-dimensional β-bismuthene.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Heat and Fluid Flow
International Journal of Heat and Fluid Flow 工程技术-工程:机械
CiteScore
5.00
自引率
7.70%
发文量
131
审稿时长
33 days
期刊介绍: The International Journal of Heat and Fluid Flow welcomes high-quality original contributions on experimental, computational, and physical aspects of convective heat transfer and fluid dynamics relevant to engineering or the environment, including multiphase and microscale flows. Papers reporting the application of these disciplines to design and development, with emphasis on new technological fields, are also welcomed. Some of these new fields include microscale electronic and mechanical systems; medical and biological systems; and thermal and flow control in both the internal and external environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信