基于In3SbTe2的智能可调谐彩色热发射器,用于全季节热管理

IF 6.3 2区 材料科学 Q2 ENERGY & FUELS
Xiang Song , Xueying Xia , Yong Chen
{"title":"基于In3SbTe2的智能可调谐彩色热发射器,用于全季节热管理","authors":"Xiang Song ,&nbsp;Xueying Xia ,&nbsp;Yong Chen","doi":"10.1016/j.solmat.2025.113939","DOIUrl":null,"url":null,"abstract":"<div><div>Improving thermal management is critical for boosting energy utilization efficiency. IST (In<sub>3</sub>SbTe<sub>2</sub>), a phase change material with non-volatile switching and wide modulability, enables dynamic thermal control. Herein, we introduce a five-layer thin-film modulatable thermal emitter based on IST, designed to integrate daytime solar heat collection and nighttime radiative cooling. The average absorptivity in the solar band (0.3–2.5 μm) reaches 0.8 in the amorphous state of this emitter, and the average emissivity at the atmospheric window (3–5 μm, 8–14 μm) is 0.23 and 0.13, respectively; in the crystalline state, the emissivity at the atmospheric window rises to 0.5 and 0.92, which enables the efficient realization of day and night thermal management. Adjusting ZnS thickness allows vivid, angle-stable coloration for architectural and camouflage uses. The emitter maintains stable emissivity under wide-angle incidence and varying refractive conditions, ensuring adaptability. Under AM1.5 illumination, it achieves over 80 % solar absorption with strong photothermal conversion, and net radiative cooling power reaches 70.37 W m<sup>−2</sup> at zero temperature difference. Adding a solar reflector reduces amorphous-state emissivity (0.19 at 3–5 μm, 0.22 at 8–14 μm) and crystalline-state solar absorptivity (0.3 at 0.3–2.5 μm), while increasing crystalline emissivity (0.55 at 3–5 μm, 0.89 at 8–14 μm), enabling daytime cooling and nighttime insulation. Finally, we performed simulations for typical application scenarios in reality and concluded that the proposed thermal emitter has good solar energy absorption, radiation cooling, and thermal insulation. In summary, the thermal emitter shows promising potential for efficiently utilizing and converting all-season energy.</div></div>","PeriodicalId":429,"journal":{"name":"Solar Energy Materials and Solar Cells","volume":"294 ","pages":"Article 113939"},"PeriodicalIF":6.3000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Smart tunable colorful thermal emitter based on In3SbTe2 for all-season thermal management\",\"authors\":\"Xiang Song ,&nbsp;Xueying Xia ,&nbsp;Yong Chen\",\"doi\":\"10.1016/j.solmat.2025.113939\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Improving thermal management is critical for boosting energy utilization efficiency. IST (In<sub>3</sub>SbTe<sub>2</sub>), a phase change material with non-volatile switching and wide modulability, enables dynamic thermal control. Herein, we introduce a five-layer thin-film modulatable thermal emitter based on IST, designed to integrate daytime solar heat collection and nighttime radiative cooling. The average absorptivity in the solar band (0.3–2.5 μm) reaches 0.8 in the amorphous state of this emitter, and the average emissivity at the atmospheric window (3–5 μm, 8–14 μm) is 0.23 and 0.13, respectively; in the crystalline state, the emissivity at the atmospheric window rises to 0.5 and 0.92, which enables the efficient realization of day and night thermal management. Adjusting ZnS thickness allows vivid, angle-stable coloration for architectural and camouflage uses. The emitter maintains stable emissivity under wide-angle incidence and varying refractive conditions, ensuring adaptability. Under AM1.5 illumination, it achieves over 80 % solar absorption with strong photothermal conversion, and net radiative cooling power reaches 70.37 W m<sup>−2</sup> at zero temperature difference. Adding a solar reflector reduces amorphous-state emissivity (0.19 at 3–5 μm, 0.22 at 8–14 μm) and crystalline-state solar absorptivity (0.3 at 0.3–2.5 μm), while increasing crystalline emissivity (0.55 at 3–5 μm, 0.89 at 8–14 μm), enabling daytime cooling and nighttime insulation. Finally, we performed simulations for typical application scenarios in reality and concluded that the proposed thermal emitter has good solar energy absorption, radiation cooling, and thermal insulation. In summary, the thermal emitter shows promising potential for efficiently utilizing and converting all-season energy.</div></div>\",\"PeriodicalId\":429,\"journal\":{\"name\":\"Solar Energy Materials and Solar Cells\",\"volume\":\"294 \",\"pages\":\"Article 113939\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar Energy Materials and Solar Cells\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0927024825005409\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy Materials and Solar Cells","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927024825005409","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

改善热管理对提高能源利用效率至关重要。IST (In3SbTe2)是一种相变材料,具有非易失性开关和宽可调性,可实现动态热控制。在此,我们介绍了一种基于IST的五层薄膜可调热发射器,旨在将白天的太阳热量收集和夜间的辐射冷却结合起来。在非晶状态下,该发射体在太阳波段(0.3 ~ 2.5 μm)的平均吸收率达到0.8,在大气窗口(3 ~ 5 μm, 8 ~ 14 μm)的平均发射率分别为0.23和0.13;在结晶状态下,大气窗口处的发射率上升到0.5和0.92,可以有效地实现昼夜热管理。调整ZnS的厚度可以为建筑和伪装用途提供生动,角度稳定的颜色。在广角入射和变折射条件下,发射极保持稳定的发射率,保证了适应性。在AM1.5照度下,太阳能吸收率达到80%以上,光热转换强,零温差下净辐射制冷功率达到70.37 W m−2。添加太阳反射镜可降低非晶态发射率(3-5 μm处0.19,8-14 μm处0.22)和晶态太阳吸收率(0.3 - 2.5 μm处0.3),同时提高晶体发射率(3-5 μm处0.55,8-14 μm处0.89),实现白天制冷和夜间保温。最后,对现实中典型应用场景进行了模拟,结果表明该热辐射器具有良好的太阳能吸收、辐射冷却和隔热性能。综上所述,热发射器显示出有效利用和转换全季节能量的良好潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Smart tunable colorful thermal emitter based on In3SbTe2 for all-season thermal management
Improving thermal management is critical for boosting energy utilization efficiency. IST (In3SbTe2), a phase change material with non-volatile switching and wide modulability, enables dynamic thermal control. Herein, we introduce a five-layer thin-film modulatable thermal emitter based on IST, designed to integrate daytime solar heat collection and nighttime radiative cooling. The average absorptivity in the solar band (0.3–2.5 μm) reaches 0.8 in the amorphous state of this emitter, and the average emissivity at the atmospheric window (3–5 μm, 8–14 μm) is 0.23 and 0.13, respectively; in the crystalline state, the emissivity at the atmospheric window rises to 0.5 and 0.92, which enables the efficient realization of day and night thermal management. Adjusting ZnS thickness allows vivid, angle-stable coloration for architectural and camouflage uses. The emitter maintains stable emissivity under wide-angle incidence and varying refractive conditions, ensuring adaptability. Under AM1.5 illumination, it achieves over 80 % solar absorption with strong photothermal conversion, and net radiative cooling power reaches 70.37 W m−2 at zero temperature difference. Adding a solar reflector reduces amorphous-state emissivity (0.19 at 3–5 μm, 0.22 at 8–14 μm) and crystalline-state solar absorptivity (0.3 at 0.3–2.5 μm), while increasing crystalline emissivity (0.55 at 3–5 μm, 0.89 at 8–14 μm), enabling daytime cooling and nighttime insulation. Finally, we performed simulations for typical application scenarios in reality and concluded that the proposed thermal emitter has good solar energy absorption, radiation cooling, and thermal insulation. In summary, the thermal emitter shows promising potential for efficiently utilizing and converting all-season energy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Solar Energy Materials and Solar Cells
Solar Energy Materials and Solar Cells 工程技术-材料科学:综合
CiteScore
12.60
自引率
11.60%
发文量
513
审稿时长
47 days
期刊介绍: Solar Energy Materials & Solar Cells is intended as a vehicle for the dissemination of research results on materials science and technology related to photovoltaic, photothermal and photoelectrochemical solar energy conversion. Materials science is taken in the broadest possible sense and encompasses physics, chemistry, optics, materials fabrication and analysis for all types of materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信