渗透表面上具有Cattaneo-Christov热流的Darcy-Forchheimer流SiO2-MoS2 /水混合纳米流体的热辐射效应

IF 2.5 4区 综合性期刊 Q2 MULTIDISCIPLINARY SCIENCES
Abdullah Alhushaybari , Umar Farooq , Muhammad Imran , Shan Ali Khan , Walid Aich , Wajdi Rajhi , Dennis Ling Chuan Ching , Ilyas Khan
{"title":"渗透表面上具有Cattaneo-Christov热流的Darcy-Forchheimer流SiO2-MoS2 /水混合纳米流体的热辐射效应","authors":"Abdullah Alhushaybari ,&nbsp;Umar Farooq ,&nbsp;Muhammad Imran ,&nbsp;Shan Ali Khan ,&nbsp;Walid Aich ,&nbsp;Wajdi Rajhi ,&nbsp;Dennis Ling Chuan Ching ,&nbsp;Ilyas Khan","doi":"10.1016/j.jrras.2025.101914","DOIUrl":null,"url":null,"abstract":"<div><div>This research offersa computational and numerical analysis of SiO<sub>2</sub>/water nanofluid and SiO<sub>2</sub>–MoS<sub>2</sub>/water hybrid nanofluid under Darcy–Forchheimer flow conditions across a permeable surface. The model incorporates the consequences of the Cattaneo–Christovthermal radiation, heat flux model, viscous dissipation, and variable solid volume fractions of nanoparticles to evaluate the behavior of the fluids. The controlling nonlinear partial differential equations are converted into a system of ordinary differential equations and numerically resolved utilizing MATLAB's BVP4C solver in conjunction with the shooting method. bResultsreveal that hybrid nanofluids, particularly the SiO<sub>2</sub>–MoS<sub>2</sub>/water composition, significantly outperform mono-nanofluids in terms of thermal conductivity, heat transfer efficiency, and friction reduction. SiO<sub>2</sub>/water nanofluid is commonly used in electronic cooling, solar collectors, automotive radiators, biomedical devices, and heat exchangers due to its good thermal performance, chemical stability, and low cost making it ideal for safe, non-toxic heat transfer applications. In contrast, the SiO<sub>2</sub>–MoS<sub>2</sub>/water hybrid nanofluid offers superior thermal and tribological properties, making it highly suitable for advanced heat exchangers, solar thermal systems, cutting and grinding operations, geothermal energy systems, and aerospace cooling technologies. The synergistic enhancement provided by MoS<sub>2</sub> greatly improves both heat transfer and lubrication, positioning this hybrid nanofluid as a promising candidate for next-generation thermal management solutions.</div></div>","PeriodicalId":16920,"journal":{"name":"Journal of Radiation Research and Applied Sciences","volume":"18 4","pages":"Article 101914"},"PeriodicalIF":2.5000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermal radiation effect on SiO2–MoS2/Water hybrid nanofluids with Darcy–Forchheimer flow with Cattaneo–Christov heat flux over a permeable surface\",\"authors\":\"Abdullah Alhushaybari ,&nbsp;Umar Farooq ,&nbsp;Muhammad Imran ,&nbsp;Shan Ali Khan ,&nbsp;Walid Aich ,&nbsp;Wajdi Rajhi ,&nbsp;Dennis Ling Chuan Ching ,&nbsp;Ilyas Khan\",\"doi\":\"10.1016/j.jrras.2025.101914\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This research offersa computational and numerical analysis of SiO<sub>2</sub>/water nanofluid and SiO<sub>2</sub>–MoS<sub>2</sub>/water hybrid nanofluid under Darcy–Forchheimer flow conditions across a permeable surface. The model incorporates the consequences of the Cattaneo–Christovthermal radiation, heat flux model, viscous dissipation, and variable solid volume fractions of nanoparticles to evaluate the behavior of the fluids. The controlling nonlinear partial differential equations are converted into a system of ordinary differential equations and numerically resolved utilizing MATLAB's BVP4C solver in conjunction with the shooting method. bResultsreveal that hybrid nanofluids, particularly the SiO<sub>2</sub>–MoS<sub>2</sub>/water composition, significantly outperform mono-nanofluids in terms of thermal conductivity, heat transfer efficiency, and friction reduction. SiO<sub>2</sub>/water nanofluid is commonly used in electronic cooling, solar collectors, automotive radiators, biomedical devices, and heat exchangers due to its good thermal performance, chemical stability, and low cost making it ideal for safe, non-toxic heat transfer applications. In contrast, the SiO<sub>2</sub>–MoS<sub>2</sub>/water hybrid nanofluid offers superior thermal and tribological properties, making it highly suitable for advanced heat exchangers, solar thermal systems, cutting and grinding operations, geothermal energy systems, and aerospace cooling technologies. The synergistic enhancement provided by MoS<sub>2</sub> greatly improves both heat transfer and lubrication, positioning this hybrid nanofluid as a promising candidate for next-generation thermal management solutions.</div></div>\",\"PeriodicalId\":16920,\"journal\":{\"name\":\"Journal of Radiation Research and Applied Sciences\",\"volume\":\"18 4\",\"pages\":\"Article 101914\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Radiation Research and Applied Sciences\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1687850725006260\",\"RegionNum\":4,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Radiation Research and Applied Sciences","FirstCategoryId":"103","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1687850725006260","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本研究对SiO2/水纳米流体和SiO2 - mos2 /水混合纳米流体在达西-福希海默流动条件下通过可渗透表面进行了计算和数值分析。该模型结合了cattaneo - christov热辐射、热流模型、粘性耗散和纳米颗粒的可变固体体积分数的结果来评估流体的行为。将控制非线性偏微分方程转化为常微分方程组,利用MATLAB的BVP4C求解器结合射击法进行数值求解。结果表明,混合纳米流体,特别是SiO2-MoS2 /水组成,在导热性、传热效率和减少摩擦方面明显优于单纳米流体。SiO2/水纳米流体通常用于电子冷却、太阳能集热器、汽车散热器、生物医学设备和热交换器,由于其良好的热性能、化学稳定性和低成本,使其成为安全、无毒传热应用的理想选择。相比之下,SiO2-MoS2 /水混合纳米流体具有优异的热学和摩擦学性能,非常适用于先进的热交换器、太阳能热系统、切割和磨削操作、地热能源系统和航空航天冷却技术。MoS2提供的协同增强功能极大地改善了传热和润滑,将这种混合纳米流体定位为下一代热管理解决方案的有希望的候选者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Thermal radiation effect on SiO2–MoS2/Water hybrid nanofluids with Darcy–Forchheimer flow with Cattaneo–Christov heat flux over a permeable surface
This research offersa computational and numerical analysis of SiO2/water nanofluid and SiO2–MoS2/water hybrid nanofluid under Darcy–Forchheimer flow conditions across a permeable surface. The model incorporates the consequences of the Cattaneo–Christovthermal radiation, heat flux model, viscous dissipation, and variable solid volume fractions of nanoparticles to evaluate the behavior of the fluids. The controlling nonlinear partial differential equations are converted into a system of ordinary differential equations and numerically resolved utilizing MATLAB's BVP4C solver in conjunction with the shooting method. bResultsreveal that hybrid nanofluids, particularly the SiO2–MoS2/water composition, significantly outperform mono-nanofluids in terms of thermal conductivity, heat transfer efficiency, and friction reduction. SiO2/water nanofluid is commonly used in electronic cooling, solar collectors, automotive radiators, biomedical devices, and heat exchangers due to its good thermal performance, chemical stability, and low cost making it ideal for safe, non-toxic heat transfer applications. In contrast, the SiO2–MoS2/water hybrid nanofluid offers superior thermal and tribological properties, making it highly suitable for advanced heat exchangers, solar thermal systems, cutting and grinding operations, geothermal energy systems, and aerospace cooling technologies. The synergistic enhancement provided by MoS2 greatly improves both heat transfer and lubrication, positioning this hybrid nanofluid as a promising candidate for next-generation thermal management solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
5.90%
发文量
130
审稿时长
16 weeks
期刊介绍: Journal of Radiation Research and Applied Sciences provides a high quality medium for the publication of substantial, original and scientific and technological papers on the development and applications of nuclear, radiation and isotopes in biology, medicine, drugs, biochemistry, microbiology, agriculture, entomology, food technology, chemistry, physics, solid states, engineering, environmental and applied sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信