深度学习方法在LIBS成像数据中的应用

IF 3.8 2区 化学 Q1 SPECTROSCOPY
Javier E. Rinaldi, Andrés Lucía, Carlos Ararat-Ibarguen, C.A. Rinaldi
{"title":"深度学习方法在LIBS成像数据中的应用","authors":"Javier E. Rinaldi,&nbsp;Andrés Lucía,&nbsp;Carlos Ararat-Ibarguen,&nbsp;C.A. Rinaldi","doi":"10.1016/j.sab.2025.107315","DOIUrl":null,"url":null,"abstract":"<div><div>This study explores the application of Convolutional Neural Networks (CNNs) to analyze LIBS images for elemental identification in materials such as steel, zirconium, and aluminum. A ResNet-50 architecture was implemented alongside entropy-based preprocessing to enhance feature extraction. The results demonstrate that CNNs efficiently extract complex features and serve as a cost-effective alternative to conventional spectrometric instruments.</div></div>","PeriodicalId":21890,"journal":{"name":"Spectrochimica Acta Part B: Atomic Spectroscopy","volume":"233 ","pages":"Article 107315"},"PeriodicalIF":3.8000,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of deep learning methods to LIBS imaging data\",\"authors\":\"Javier E. Rinaldi,&nbsp;Andrés Lucía,&nbsp;Carlos Ararat-Ibarguen,&nbsp;C.A. Rinaldi\",\"doi\":\"10.1016/j.sab.2025.107315\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study explores the application of Convolutional Neural Networks (CNNs) to analyze LIBS images for elemental identification in materials such as steel, zirconium, and aluminum. A ResNet-50 architecture was implemented alongside entropy-based preprocessing to enhance feature extraction. The results demonstrate that CNNs efficiently extract complex features and serve as a cost-effective alternative to conventional spectrometric instruments.</div></div>\",\"PeriodicalId\":21890,\"journal\":{\"name\":\"Spectrochimica Acta Part B: Atomic Spectroscopy\",\"volume\":\"233 \",\"pages\":\"Article 107315\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Spectrochimica Acta Part B: Atomic Spectroscopy\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0584854725002009\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SPECTROSCOPY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spectrochimica Acta Part B: Atomic Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0584854725002009","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SPECTROSCOPY","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了卷积神经网络(cnn)在分析LIBS图像中的应用,用于钢、锆和铝等材料的元素识别。采用ResNet-50架构和基于熵的预处理来增强特征提取。结果表明,cnn可以有效地提取复杂特征,并作为传统光谱仪器的一种经济有效的替代方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Application of deep learning methods to LIBS imaging data

Application of deep learning methods to LIBS imaging data
This study explores the application of Convolutional Neural Networks (CNNs) to analyze LIBS images for elemental identification in materials such as steel, zirconium, and aluminum. A ResNet-50 architecture was implemented alongside entropy-based preprocessing to enhance feature extraction. The results demonstrate that CNNs efficiently extract complex features and serve as a cost-effective alternative to conventional spectrometric instruments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.10
自引率
12.10%
发文量
173
审稿时长
81 days
期刊介绍: Spectrochimica Acta Part B: Atomic Spectroscopy, is intended for the rapid publication of both original work and reviews in the following fields: Atomic Emission (AES), Atomic Absorption (AAS) and Atomic Fluorescence (AFS) spectroscopy; Mass Spectrometry (MS) for inorganic analysis covering Spark Source (SS-MS), Inductively Coupled Plasma (ICP-MS), Glow Discharge (GD-MS), and Secondary Ion Mass Spectrometry (SIMS). Laser induced atomic spectroscopy for inorganic analysis, including non-linear optical laser spectroscopy, covering Laser Enhanced Ionization (LEI), Laser Induced Fluorescence (LIF), Resonance Ionization Spectroscopy (RIS) and Resonance Ionization Mass Spectrometry (RIMS); Laser Induced Breakdown Spectroscopy (LIBS); Cavity Ringdown Spectroscopy (CRDS), Laser Ablation Inductively Coupled Plasma Atomic Emission Spectroscopy (LA-ICP-AES) and Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS). X-ray spectrometry, X-ray Optics and Microanalysis, including X-ray fluorescence spectrometry (XRF) and related techniques, in particular Total-reflection X-ray Fluorescence Spectrometry (TXRF), and Synchrotron Radiation-excited Total reflection XRF (SR-TXRF). Manuscripts dealing with (i) fundamentals, (ii) methodology development, (iii)instrumentation, and (iv) applications, can be submitted for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信