基于均值估计的投币最优性研究

IF 3 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Eugenio Clerico
{"title":"基于均值估计的投币最优性研究","authors":"Eugenio Clerico","doi":"10.1016/j.ijar.2025.109550","DOIUrl":null,"url":null,"abstract":"<div><div>We consider the problem of testing the mean of a bounded real random variable. We introduce a notion of optimal classes for e-variables and e-processes, and establish the optimality of the coin-betting formulation among e-variable-based algorithmic frameworks for testing and estimating the (conditional) mean. As a consequence, we provide a direct and explicit characterisation of all valid e-variables and e-processes for this testing problem. In the language of classical statistical decision theory, we fully describe the set of all admissible e-variables and e-processes, and identify the corresponding minimal complete class.</div></div>","PeriodicalId":13842,"journal":{"name":"International Journal of Approximate Reasoning","volume":"187 ","pages":"Article 109550"},"PeriodicalIF":3.0000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the optimality of coin-betting for mean estimation\",\"authors\":\"Eugenio Clerico\",\"doi\":\"10.1016/j.ijar.2025.109550\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We consider the problem of testing the mean of a bounded real random variable. We introduce a notion of optimal classes for e-variables and e-processes, and establish the optimality of the coin-betting formulation among e-variable-based algorithmic frameworks for testing and estimating the (conditional) mean. As a consequence, we provide a direct and explicit characterisation of all valid e-variables and e-processes for this testing problem. In the language of classical statistical decision theory, we fully describe the set of all admissible e-variables and e-processes, and identify the corresponding minimal complete class.</div></div>\",\"PeriodicalId\":13842,\"journal\":{\"name\":\"International Journal of Approximate Reasoning\",\"volume\":\"187 \",\"pages\":\"Article 109550\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Approximate Reasoning\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0888613X25001914\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Approximate Reasoning","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0888613X25001914","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

考虑一个有界实随机变量均值的检验问题。我们引入了e变量和e过程的最优类的概念,并在基于e变量的算法框架中建立了用于测试和估计(条件)均值的投币公式的最优性。因此,我们为这个测试问题提供了所有有效e变量和e过程的直接和明确的特征。用经典统计决策理论的语言,充分描述了所有允许e变量和e过程的集合,并识别了相应的最小完全类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the optimality of coin-betting for mean estimation
We consider the problem of testing the mean of a bounded real random variable. We introduce a notion of optimal classes for e-variables and e-processes, and establish the optimality of the coin-betting formulation among e-variable-based algorithmic frameworks for testing and estimating the (conditional) mean. As a consequence, we provide a direct and explicit characterisation of all valid e-variables and e-processes for this testing problem. In the language of classical statistical decision theory, we fully describe the set of all admissible e-variables and e-processes, and identify the corresponding minimal complete class.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Approximate Reasoning
International Journal of Approximate Reasoning 工程技术-计算机:人工智能
CiteScore
6.90
自引率
12.80%
发文量
170
审稿时长
67 days
期刊介绍: The International Journal of Approximate Reasoning is intended to serve as a forum for the treatment of imprecision and uncertainty in Artificial and Computational Intelligence, covering both the foundations of uncertainty theories, and the design of intelligent systems for scientific and engineering applications. It publishes high-quality research papers describing theoretical developments or innovative applications, as well as review articles on topics of general interest. Relevant topics include, but are not limited to, probabilistic reasoning and Bayesian networks, imprecise probabilities, random sets, belief functions (Dempster-Shafer theory), possibility theory, fuzzy sets, rough sets, decision theory, non-additive measures and integrals, qualitative reasoning about uncertainty, comparative probability orderings, game-theoretic probability, default reasoning, nonstandard logics, argumentation systems, inconsistency tolerant reasoning, elicitation techniques, philosophical foundations and psychological models of uncertain reasoning. Domains of application for uncertain reasoning systems include risk analysis and assessment, information retrieval and database design, information fusion, machine learning, data and web mining, computer vision, image and signal processing, intelligent data analysis, statistics, multi-agent systems, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信