Ermiya Prasad P. , Y.Ranjith Kumar , Sudhir D. Jagadale , Chepuri R.K. Rao , Sidhanath V. Bhosale
{"title":"具有氧化还原活性苯胺低聚物的酸掺杂聚氨酯在超级电容器中的应用","authors":"Ermiya Prasad P. , Y.Ranjith Kumar , Sudhir D. Jagadale , Chepuri R.K. Rao , Sidhanath V. Bhosale","doi":"10.1016/j.mset.2025.07.002","DOIUrl":null,"url":null,"abstract":"<div><div>In the rapidly growing modern era, the advancement of electrochemical energy storage (EES) materials for electronic devices is a key challenge. Herein, we report the synthesis of novel redox-active polyureas (PUrs) bearing carbonyl functional group and repeated redox segments starting from the redox-active amine-capped trianiline (ACTA) and amine-capped tetraaniline (ACTAni). These materials are doped with 2 M HCl and designated as DPTA and DPTAni. The material properties and surface analysis are thoroughly analyzed by fourier transform infrared (FT-IR) spectroscopy, UV–Vis absorption spectroscopy, field emission-scanning electron microscopy (FE-SEM), X-ray diffraction (XRD) and Brunauer-Emmett-Teller (BET) techniques. In a three-electrode (3E) system, DPTA achieves a high specific capacitance (<em>C</em><sub>sp</sub>) of 260.9 F/g, outperforming DPTAni of 239 F/g, as determined by galvanostatic charge–discharge (GCD) measurements. However, long-term cycling stability exhibits the capacitance retention for DPTA and DPTAni was about 59.12 % and 46.38 %, respectively, for 2000 cycles and with a significant decrement of <em>C</em><sub>sp</sub> for 5000 cycles owing to an increase in the solution resistance, as confirmed by Electrochemical impedance spectroscopy (EIS). This study highlights the potential of carbonyl-functionalized PUrs as promising candidates for next-generation pseudo-capacitive materials, with further optimizations for enhancing cycling stability.</div></div>","PeriodicalId":18283,"journal":{"name":"Materials Science for Energy Technologies","volume":"8 ","pages":"Pages 231-242"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploration of acid-doped polyureas with redox-active aniline oligomers for supercapacitor applications\",\"authors\":\"Ermiya Prasad P. , Y.Ranjith Kumar , Sudhir D. Jagadale , Chepuri R.K. Rao , Sidhanath V. Bhosale\",\"doi\":\"10.1016/j.mset.2025.07.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In the rapidly growing modern era, the advancement of electrochemical energy storage (EES) materials for electronic devices is a key challenge. Herein, we report the synthesis of novel redox-active polyureas (PUrs) bearing carbonyl functional group and repeated redox segments starting from the redox-active amine-capped trianiline (ACTA) and amine-capped tetraaniline (ACTAni). These materials are doped with 2 M HCl and designated as DPTA and DPTAni. The material properties and surface analysis are thoroughly analyzed by fourier transform infrared (FT-IR) spectroscopy, UV–Vis absorption spectroscopy, field emission-scanning electron microscopy (FE-SEM), X-ray diffraction (XRD) and Brunauer-Emmett-Teller (BET) techniques. In a three-electrode (3E) system, DPTA achieves a high specific capacitance (<em>C</em><sub>sp</sub>) of 260.9 F/g, outperforming DPTAni of 239 F/g, as determined by galvanostatic charge–discharge (GCD) measurements. However, long-term cycling stability exhibits the capacitance retention for DPTA and DPTAni was about 59.12 % and 46.38 %, respectively, for 2000 cycles and with a significant decrement of <em>C</em><sub>sp</sub> for 5000 cycles owing to an increase in the solution resistance, as confirmed by Electrochemical impedance spectroscopy (EIS). This study highlights the potential of carbonyl-functionalized PUrs as promising candidates for next-generation pseudo-capacitive materials, with further optimizations for enhancing cycling stability.</div></div>\",\"PeriodicalId\":18283,\"journal\":{\"name\":\"Materials Science for Energy Technologies\",\"volume\":\"8 \",\"pages\":\"Pages 231-242\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Science for Energy Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2589299125000096\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science for Energy Technologies","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589299125000096","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Materials Science","Score":null,"Total":0}
Exploration of acid-doped polyureas with redox-active aniline oligomers for supercapacitor applications
In the rapidly growing modern era, the advancement of electrochemical energy storage (EES) materials for electronic devices is a key challenge. Herein, we report the synthesis of novel redox-active polyureas (PUrs) bearing carbonyl functional group and repeated redox segments starting from the redox-active amine-capped trianiline (ACTA) and amine-capped tetraaniline (ACTAni). These materials are doped with 2 M HCl and designated as DPTA and DPTAni. The material properties and surface analysis are thoroughly analyzed by fourier transform infrared (FT-IR) spectroscopy, UV–Vis absorption spectroscopy, field emission-scanning electron microscopy (FE-SEM), X-ray diffraction (XRD) and Brunauer-Emmett-Teller (BET) techniques. In a three-electrode (3E) system, DPTA achieves a high specific capacitance (Csp) of 260.9 F/g, outperforming DPTAni of 239 F/g, as determined by galvanostatic charge–discharge (GCD) measurements. However, long-term cycling stability exhibits the capacitance retention for DPTA and DPTAni was about 59.12 % and 46.38 %, respectively, for 2000 cycles and with a significant decrement of Csp for 5000 cycles owing to an increase in the solution resistance, as confirmed by Electrochemical impedance spectroscopy (EIS). This study highlights the potential of carbonyl-functionalized PUrs as promising candidates for next-generation pseudo-capacitive materials, with further optimizations for enhancing cycling stability.