Martha Alvarez-Ramírez , Johanna D. García-Saldaña , Jaume Llibre
{"title":"二维二次非线性系统的可积性与周期轨道","authors":"Martha Alvarez-Ramírez , Johanna D. García-Saldaña , Jaume Llibre","doi":"10.1016/j.nonrwa.2025.104491","DOIUrl":null,"url":null,"abstract":"<div><div>In mechanics jerk is the rate of change of an object’s acceleration over time. Thus a jerk equation is a differential equation of the form <span><math><mrow><mover><mrow><mi>x</mi></mrow><mrow><mo>⃛</mo></mrow></mover><mo>=</mo><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mover><mrow><mi>x</mi></mrow><mrow><mo>̇</mo></mrow></mover><mo>,</mo><mover><mrow><mi>x</mi></mrow><mrow><mo>̈</mo></mrow></mover><mo>)</mo></mrow></mrow></math></span>, where <span><math><mi>x</mi></math></span>, <span><math><mover><mrow><mi>x</mi></mrow><mrow><mo>̇</mo></mrow></mover></math></span>, <span><math><mover><mrow><mi>x</mi></mrow><mrow><mo>̈</mo></mrow></mover></math></span> and <span><math><mover><mrow><mi>x</mi></mrow><mrow><mo>⃛</mo></mrow></mover></math></span> represent the position, velocity, acceleration, and jerk, respectively. The jerk differential equation can be written as the jerk differential system <span><math><mrow><mover><mrow><mi>x</mi></mrow><mrow><mo>̇</mo></mrow></mover><mo>=</mo><mi>y</mi><mo>,</mo><mspace></mspace><mover><mrow><mi>y</mi></mrow><mrow><mo>̇</mo></mrow></mover><mo>=</mo><mi>z</mi><mo>,</mo><mspace></mspace><mover><mrow><mi>z</mi></mrow><mrow><mo>̇</mo></mrow></mover><mo>=</mo><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>,</mo><mi>z</mi><mo>)</mo></mrow><mo>,</mo></mrow></math></span> in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>. In this paper we study the jerk differential system with <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>,</mo><mi>z</mi><mo>)</mo></mrow><mo>=</mo><mo>−</mo><mi>a</mi><mi>x</mi><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mi>x</mi><mo>)</mo></mrow><mo>−</mo><mi>y</mi><mo>+</mo><mi>b</mi><msup><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span>, previously studied by other authors showing that this system can exhibit chaos for some values of its parameters. When the parameters <span><math><mrow><mi>a</mi><mo>=</mo><mi>b</mi><mo>=</mo><mn>0</mn></mrow></math></span> the <span><math><mi>x</mi></math></span>-axis is filled with zero-Hopf equilibria, and all the other orbits are periodic. Here we prove analytically the existence of two families of periodic orbits for sufficiently small values of the parameters <span><math><mi>a</mi></math></span> and <span><math><mi>b</mi></math></span>. One family bifurcates from the non-isolated zero-Hopf equilibrium <span><math><mrow><mo>(</mo><mn>1</mn><mo>,</mo><mn>0</mn><mo>,</mo><mn>0</mn><mo>)</mo></mrow></math></span> of the jerk system with <span><math><mrow><mi>a</mi><mo>=</mo><mi>b</mi><mo>=</mo><mn>0</mn></mrow></math></span>, while the other family bifurcates from a periodic orbit of the jerk system with <span><math><mrow><mi>a</mi><mo>=</mo><mi>b</mi><mo>=</mo><mn>0</mn></mrow></math></span>.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"88 ","pages":"Article 104491"},"PeriodicalIF":1.8000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrability and periodic orbits of a 3D jerk system with two quadratic nonlinearities\",\"authors\":\"Martha Alvarez-Ramírez , Johanna D. García-Saldaña , Jaume Llibre\",\"doi\":\"10.1016/j.nonrwa.2025.104491\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In mechanics jerk is the rate of change of an object’s acceleration over time. Thus a jerk equation is a differential equation of the form <span><math><mrow><mover><mrow><mi>x</mi></mrow><mrow><mo>⃛</mo></mrow></mover><mo>=</mo><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mover><mrow><mi>x</mi></mrow><mrow><mo>̇</mo></mrow></mover><mo>,</mo><mover><mrow><mi>x</mi></mrow><mrow><mo>̈</mo></mrow></mover><mo>)</mo></mrow></mrow></math></span>, where <span><math><mi>x</mi></math></span>, <span><math><mover><mrow><mi>x</mi></mrow><mrow><mo>̇</mo></mrow></mover></math></span>, <span><math><mover><mrow><mi>x</mi></mrow><mrow><mo>̈</mo></mrow></mover></math></span> and <span><math><mover><mrow><mi>x</mi></mrow><mrow><mo>⃛</mo></mrow></mover></math></span> represent the position, velocity, acceleration, and jerk, respectively. The jerk differential equation can be written as the jerk differential system <span><math><mrow><mover><mrow><mi>x</mi></mrow><mrow><mo>̇</mo></mrow></mover><mo>=</mo><mi>y</mi><mo>,</mo><mspace></mspace><mover><mrow><mi>y</mi></mrow><mrow><mo>̇</mo></mrow></mover><mo>=</mo><mi>z</mi><mo>,</mo><mspace></mspace><mover><mrow><mi>z</mi></mrow><mrow><mo>̇</mo></mrow></mover><mo>=</mo><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>,</mo><mi>z</mi><mo>)</mo></mrow><mo>,</mo></mrow></math></span> in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>. In this paper we study the jerk differential system with <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>,</mo><mi>z</mi><mo>)</mo></mrow><mo>=</mo><mo>−</mo><mi>a</mi><mi>x</mi><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mi>x</mi><mo>)</mo></mrow><mo>−</mo><mi>y</mi><mo>+</mo><mi>b</mi><msup><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span>, previously studied by other authors showing that this system can exhibit chaos for some values of its parameters. When the parameters <span><math><mrow><mi>a</mi><mo>=</mo><mi>b</mi><mo>=</mo><mn>0</mn></mrow></math></span> the <span><math><mi>x</mi></math></span>-axis is filled with zero-Hopf equilibria, and all the other orbits are periodic. Here we prove analytically the existence of two families of periodic orbits for sufficiently small values of the parameters <span><math><mi>a</mi></math></span> and <span><math><mi>b</mi></math></span>. One family bifurcates from the non-isolated zero-Hopf equilibrium <span><math><mrow><mo>(</mo><mn>1</mn><mo>,</mo><mn>0</mn><mo>,</mo><mn>0</mn><mo>)</mo></mrow></math></span> of the jerk system with <span><math><mrow><mi>a</mi><mo>=</mo><mi>b</mi><mo>=</mo><mn>0</mn></mrow></math></span>, while the other family bifurcates from a periodic orbit of the jerk system with <span><math><mrow><mi>a</mi><mo>=</mo><mi>b</mi><mo>=</mo><mn>0</mn></mrow></math></span>.</div></div>\",\"PeriodicalId\":49745,\"journal\":{\"name\":\"Nonlinear Analysis-Real World Applications\",\"volume\":\"88 \",\"pages\":\"Article 104491\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Analysis-Real World Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1468121825001774\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Real World Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1468121825001774","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Integrability and periodic orbits of a 3D jerk system with two quadratic nonlinearities
In mechanics jerk is the rate of change of an object’s acceleration over time. Thus a jerk equation is a differential equation of the form , where , , and represent the position, velocity, acceleration, and jerk, respectively. The jerk differential equation can be written as the jerk differential system in . In this paper we study the jerk differential system with , previously studied by other authors showing that this system can exhibit chaos for some values of its parameters. When the parameters the -axis is filled with zero-Hopf equilibria, and all the other orbits are periodic. Here we prove analytically the existence of two families of periodic orbits for sufficiently small values of the parameters and . One family bifurcates from the non-isolated zero-Hopf equilibrium of the jerk system with , while the other family bifurcates from a periodic orbit of the jerk system with .
期刊介绍:
Nonlinear Analysis: Real World Applications welcomes all research articles of the highest quality with special emphasis on applying techniques of nonlinear analysis to model and to treat nonlinear phenomena with which nature confronts us. Coverage of applications includes any branch of science and technology such as solid and fluid mechanics, material science, mathematical biology and chemistry, control theory, and inverse problems.
The aim of Nonlinear Analysis: Real World Applications is to publish articles which are predominantly devoted to employing methods and techniques from analysis, including partial differential equations, functional analysis, dynamical systems and evolution equations, calculus of variations, and bifurcations theory.