Mustapha Habib , Valeria Palomba , Andrea Frazzica , Qian Wang
{"title":"利用数据驱动模型预测控制优化建筑管理系统中的混合热能储存","authors":"Mustapha Habib , Valeria Palomba , Andrea Frazzica , Qian Wang","doi":"10.1016/j.egyr.2025.08.033","DOIUrl":null,"url":null,"abstract":"<div><div>In most typical situations, thermal energy storage (TES) systems, which incorporate sensible and latent storage capacities, are not effectively utilized within the overall functions of building energy management systems (BEMSs), which usually rely on classical rule-based control (RBC). This study addresses the challenge of overcoming this by featuring model predictive control (MPC). The proposed method is based on modeling a water tank-integrated phase change material (PCM) using data-driven linear approximation generated with sparse regression. Based on the control objective, the proposed MPC can address two control targets, either providing robust and fast-tracking to the TES charging/discharging setpoints or reducing the energy cost related to the building heating needs. The digital simulation of a two-day scenario, using real operation conditions, demonstrates the effectiveness of the proposed MPC framework, showing up to 57 % heating cost reduction compared to the RBC scenario. As the real-time control requirement is critical, the MPC computing time was evaluated to assess its potential for integration into real-world applications within BEMS.</div></div>","PeriodicalId":11798,"journal":{"name":"Energy Reports","volume":"14 ","pages":"Pages 2092-2109"},"PeriodicalIF":5.1000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing hybrid thermal energy storage in building management systems using data-driven model predictive control\",\"authors\":\"Mustapha Habib , Valeria Palomba , Andrea Frazzica , Qian Wang\",\"doi\":\"10.1016/j.egyr.2025.08.033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In most typical situations, thermal energy storage (TES) systems, which incorporate sensible and latent storage capacities, are not effectively utilized within the overall functions of building energy management systems (BEMSs), which usually rely on classical rule-based control (RBC). This study addresses the challenge of overcoming this by featuring model predictive control (MPC). The proposed method is based on modeling a water tank-integrated phase change material (PCM) using data-driven linear approximation generated with sparse regression. Based on the control objective, the proposed MPC can address two control targets, either providing robust and fast-tracking to the TES charging/discharging setpoints or reducing the energy cost related to the building heating needs. The digital simulation of a two-day scenario, using real operation conditions, demonstrates the effectiveness of the proposed MPC framework, showing up to 57 % heating cost reduction compared to the RBC scenario. As the real-time control requirement is critical, the MPC computing time was evaluated to assess its potential for integration into real-world applications within BEMS.</div></div>\",\"PeriodicalId\":11798,\"journal\":{\"name\":\"Energy Reports\",\"volume\":\"14 \",\"pages\":\"Pages 2092-2109\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Reports\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352484725004986\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Reports","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352484725004986","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Optimizing hybrid thermal energy storage in building management systems using data-driven model predictive control
In most typical situations, thermal energy storage (TES) systems, which incorporate sensible and latent storage capacities, are not effectively utilized within the overall functions of building energy management systems (BEMSs), which usually rely on classical rule-based control (RBC). This study addresses the challenge of overcoming this by featuring model predictive control (MPC). The proposed method is based on modeling a water tank-integrated phase change material (PCM) using data-driven linear approximation generated with sparse regression. Based on the control objective, the proposed MPC can address two control targets, either providing robust and fast-tracking to the TES charging/discharging setpoints or reducing the energy cost related to the building heating needs. The digital simulation of a two-day scenario, using real operation conditions, demonstrates the effectiveness of the proposed MPC framework, showing up to 57 % heating cost reduction compared to the RBC scenario. As the real-time control requirement is critical, the MPC computing time was evaluated to assess its potential for integration into real-world applications within BEMS.
期刊介绍:
Energy Reports is a new online multidisciplinary open access journal which focuses on publishing new research in the area of Energy with a rapid review and publication time. Energy Reports will be open to direct submissions and also to submissions from other Elsevier Energy journals, whose Editors have determined that Energy Reports would be a better fit.