截断功率克里斯-杰里分布:生存数据的经典估计方法和建模

IF 3.3 Q2 MULTIDISCIPLINARY SCIENCES
Amal S. Hassan , Gaber Sallam Salem Abdalla , Ehab M. Almetwally , Ahmed W. Shawki , Ibrahim E. Ragab , Mohammed Elgarhy
{"title":"截断功率克里斯-杰里分布:生存数据的经典估计方法和建模","authors":"Amal S. Hassan ,&nbsp;Gaber Sallam Salem Abdalla ,&nbsp;Ehab M. Almetwally ,&nbsp;Ahmed W. Shawki ,&nbsp;Ibrahim E. Ragab ,&nbsp;Mohammed Elgarhy","doi":"10.1016/j.sciaf.2025.e02898","DOIUrl":null,"url":null,"abstract":"<div><div>In many real-world scenarios, a truncated distribution arises when the domain of the parent distribution is restricted to a smaller region. This paper presents the truncated power Chris-Jerry distribution (TPC-JD), a novel flexible two-parameter truncated distribution with a domain [0, 1]. The introduction of a new distribution opens up a wide range of options and possibilities, making it possible to choose the model that best fits certain data and research goals. The associated probability density function is very adaptable as it may take on unimodal, reversed j-shaped, and various asymmetric patterns. The corresponding hazard rate function indicates that data with U- or j-shaped failure rates may be adapted by the TPC-JD. The mathematical computation of a number of statistical characteristics is given. Several estimation techniques, including twelve traditional approaches, are investigated to evaluate and compare the behavior of parameter estimates for the TPC-JD. To identify the optimal estimation strategy, a simulation study is conducted. The simulation results indicate that the percentile method is the optimal technique to estimate the quality of TPC-JD estimators. In addition, we investigate two real-world survival data sets using the TPC-JD, showing its better performance compared to some competitors.</div></div>","PeriodicalId":21690,"journal":{"name":"Scientific African","volume":"29 ","pages":"Article e02898"},"PeriodicalIF":3.3000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Truncated power Chris–Jerry distribution: Classical estimation methods and modeling to survival data\",\"authors\":\"Amal S. Hassan ,&nbsp;Gaber Sallam Salem Abdalla ,&nbsp;Ehab M. Almetwally ,&nbsp;Ahmed W. Shawki ,&nbsp;Ibrahim E. Ragab ,&nbsp;Mohammed Elgarhy\",\"doi\":\"10.1016/j.sciaf.2025.e02898\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In many real-world scenarios, a truncated distribution arises when the domain of the parent distribution is restricted to a smaller region. This paper presents the truncated power Chris-Jerry distribution (TPC-JD), a novel flexible two-parameter truncated distribution with a domain [0, 1]. The introduction of a new distribution opens up a wide range of options and possibilities, making it possible to choose the model that best fits certain data and research goals. The associated probability density function is very adaptable as it may take on unimodal, reversed j-shaped, and various asymmetric patterns. The corresponding hazard rate function indicates that data with U- or j-shaped failure rates may be adapted by the TPC-JD. The mathematical computation of a number of statistical characteristics is given. Several estimation techniques, including twelve traditional approaches, are investigated to evaluate and compare the behavior of parameter estimates for the TPC-JD. To identify the optimal estimation strategy, a simulation study is conducted. The simulation results indicate that the percentile method is the optimal technique to estimate the quality of TPC-JD estimators. In addition, we investigate two real-world survival data sets using the TPC-JD, showing its better performance compared to some competitors.</div></div>\",\"PeriodicalId\":21690,\"journal\":{\"name\":\"Scientific African\",\"volume\":\"29 \",\"pages\":\"Article e02898\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific African\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468227625003680\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific African","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468227625003680","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

在许多实际场景中,当父分布的域被限制在一个较小的区域时,就会出现截断分布。本文提出了截断幂克里斯-杰里分布(TPC-JD),这是一种具有定域[0,1]的柔性双参数截断分布。新分布的引入开辟了广泛的选择和可能性,使选择最适合某些数据和研究目标的模型成为可能。相关的概率密度函数具有很强的适应性,因为它可以呈现单峰、反j型和各种不对称模式。相应的风险率函数表明,TPC-JD可以适应U型或j型失效率的数据。给出了一些统计特性的数学计算。研究了几种估计技术,包括12种传统方法,以评估和比较TPC-JD参数估计的行为。为了确定最优的估计策略,进行了仿真研究。仿真结果表明,百分位法是估计TPC-JD估计器质量的最优方法。此外,我们使用TPC-JD研究了两个真实世界的生存数据集,与一些竞争对手相比,显示了它更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Truncated power Chris–Jerry distribution: Classical estimation methods and modeling to survival data
In many real-world scenarios, a truncated distribution arises when the domain of the parent distribution is restricted to a smaller region. This paper presents the truncated power Chris-Jerry distribution (TPC-JD), a novel flexible two-parameter truncated distribution with a domain [0, 1]. The introduction of a new distribution opens up a wide range of options and possibilities, making it possible to choose the model that best fits certain data and research goals. The associated probability density function is very adaptable as it may take on unimodal, reversed j-shaped, and various asymmetric patterns. The corresponding hazard rate function indicates that data with U- or j-shaped failure rates may be adapted by the TPC-JD. The mathematical computation of a number of statistical characteristics is given. Several estimation techniques, including twelve traditional approaches, are investigated to evaluate and compare the behavior of parameter estimates for the TPC-JD. To identify the optimal estimation strategy, a simulation study is conducted. The simulation results indicate that the percentile method is the optimal technique to estimate the quality of TPC-JD estimators. In addition, we investigate two real-world survival data sets using the TPC-JD, showing its better performance compared to some competitors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scientific African
Scientific African Multidisciplinary-Multidisciplinary
CiteScore
5.60
自引率
3.40%
发文量
332
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信