Jie Wang , Wei Wang , Xuheng Chen , Bowen Chen , Runsheng Xu
{"title":"气化后铁焦碳结构对其燃烧行为和动力学影响机理的分子研究:实验,ReaxFF MD,和DFT","authors":"Jie Wang , Wei Wang , Xuheng Chen , Bowen Chen , Runsheng Xu","doi":"10.1016/j.fuproc.2025.108324","DOIUrl":null,"url":null,"abstract":"<div><div>Iron coke has attracted attention as a low-carbon ironmaking fuel due to its high reactivity and efficient resource utilization. However, the structural characteristics of iron coke after gasification and their effect mechanisms affecting subsequent combustion remain unclear. This study investigated the effects of gasification on the carbon structure of iron coke using XRD and Raman spectroscopy, and revealed the influence mechanism of carbon structure on combustion behavior and kinetics through combined thermogravimetric analysis, ReaxFF MD, and DFT calculations. The results demonstrate that the gasification reaction catalyzed by iron/iron oxides induces more defects in the carbon structure of iron coke. The higher the gasification degree of iron coke, the greater its following combustion reactivity. Increasing the heating rate in the non-isothermal combustion process can markedly enhance the combustion performance of iron coke. ReaxFF MD simulations reveal that oxygen radicals preferentially attack and react with vacancy defects in the carbon structure, which is the primary reason for the increased reactivity of defective structures. Due to the curling effect between carbon layers, the activation energy during combustion initially increases and then decreases with rising carbon conversion. DFT calculations indicate that vacancy defects in the carbon structure play a critical role in enhancing combustion behavior. On one hand, the increased defects provide more active sites, reducing the adsorption energy for O<sub>2</sub> molecules. On the other hand, the synergistic effect of van der Waals interactions and chemical bonds in defective carbon structures effectively reduces activation energy for the combustion reaction.</div></div>","PeriodicalId":326,"journal":{"name":"Fuel Processing Technology","volume":"277 ","pages":"Article 108324"},"PeriodicalIF":7.7000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular insights into the influence mechanism of carbon structure in iron coke after gasification on its combustion behavior and kinetics: Experiments, ReaxFF MD, and DFT\",\"authors\":\"Jie Wang , Wei Wang , Xuheng Chen , Bowen Chen , Runsheng Xu\",\"doi\":\"10.1016/j.fuproc.2025.108324\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Iron coke has attracted attention as a low-carbon ironmaking fuel due to its high reactivity and efficient resource utilization. However, the structural characteristics of iron coke after gasification and their effect mechanisms affecting subsequent combustion remain unclear. This study investigated the effects of gasification on the carbon structure of iron coke using XRD and Raman spectroscopy, and revealed the influence mechanism of carbon structure on combustion behavior and kinetics through combined thermogravimetric analysis, ReaxFF MD, and DFT calculations. The results demonstrate that the gasification reaction catalyzed by iron/iron oxides induces more defects in the carbon structure of iron coke. The higher the gasification degree of iron coke, the greater its following combustion reactivity. Increasing the heating rate in the non-isothermal combustion process can markedly enhance the combustion performance of iron coke. ReaxFF MD simulations reveal that oxygen radicals preferentially attack and react with vacancy defects in the carbon structure, which is the primary reason for the increased reactivity of defective structures. Due to the curling effect between carbon layers, the activation energy during combustion initially increases and then decreases with rising carbon conversion. DFT calculations indicate that vacancy defects in the carbon structure play a critical role in enhancing combustion behavior. On one hand, the increased defects provide more active sites, reducing the adsorption energy for O<sub>2</sub> molecules. On the other hand, the synergistic effect of van der Waals interactions and chemical bonds in defective carbon structures effectively reduces activation energy for the combustion reaction.</div></div>\",\"PeriodicalId\":326,\"journal\":{\"name\":\"Fuel Processing Technology\",\"volume\":\"277 \",\"pages\":\"Article 108324\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2025-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fuel Processing Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378382025001481\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuel Processing Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378382025001481","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Molecular insights into the influence mechanism of carbon structure in iron coke after gasification on its combustion behavior and kinetics: Experiments, ReaxFF MD, and DFT
Iron coke has attracted attention as a low-carbon ironmaking fuel due to its high reactivity and efficient resource utilization. However, the structural characteristics of iron coke after gasification and their effect mechanisms affecting subsequent combustion remain unclear. This study investigated the effects of gasification on the carbon structure of iron coke using XRD and Raman spectroscopy, and revealed the influence mechanism of carbon structure on combustion behavior and kinetics through combined thermogravimetric analysis, ReaxFF MD, and DFT calculations. The results demonstrate that the gasification reaction catalyzed by iron/iron oxides induces more defects in the carbon structure of iron coke. The higher the gasification degree of iron coke, the greater its following combustion reactivity. Increasing the heating rate in the non-isothermal combustion process can markedly enhance the combustion performance of iron coke. ReaxFF MD simulations reveal that oxygen radicals preferentially attack and react with vacancy defects in the carbon structure, which is the primary reason for the increased reactivity of defective structures. Due to the curling effect between carbon layers, the activation energy during combustion initially increases and then decreases with rising carbon conversion. DFT calculations indicate that vacancy defects in the carbon structure play a critical role in enhancing combustion behavior. On one hand, the increased defects provide more active sites, reducing the adsorption energy for O2 molecules. On the other hand, the synergistic effect of van der Waals interactions and chemical bonds in defective carbon structures effectively reduces activation energy for the combustion reaction.
期刊介绍:
Fuel Processing Technology (FPT) deals with the scientific and technological aspects of converting fossil and renewable resources to clean fuels, value-added chemicals, fuel-related advanced carbon materials and by-products. In addition to the traditional non-nuclear fossil fuels, biomass and wastes, papers on the integration of renewables such as solar and wind energy and energy storage into the fuel processing processes, as well as papers on the production and conversion of non-carbon-containing fuels such as hydrogen and ammonia, are also welcome. While chemical conversion is emphasized, papers on advanced physical conversion processes are also considered for publication in FPT. Papers on the fundamental aspects of fuel structure and properties will also be considered.