一种水凝胶/P(VDF-TrFE)系统,通过可控的自维持电线索增强骨再生

IF 6 2区 医学 Q2 MATERIALS SCIENCE, BIOMATERIALS
Qin Luo , Kepeng Hu , Haoqing Liu , Xiyue Duan , Wen Chen , Xiaoyi Chen , Xiaojun Long , Weiming Lin , Chengwei Wu , Zhangfa Song , Chengyun Ning , Wenjian Weng , Kui Cheng
{"title":"一种水凝胶/P(VDF-TrFE)系统,通过可控的自维持电线索增强骨再生","authors":"Qin Luo ,&nbsp;Kepeng Hu ,&nbsp;Haoqing Liu ,&nbsp;Xiyue Duan ,&nbsp;Wen Chen ,&nbsp;Xiaoyi Chen ,&nbsp;Xiaojun Long ,&nbsp;Weiming Lin ,&nbsp;Chengwei Wu ,&nbsp;Zhangfa Song ,&nbsp;Chengyun Ning ,&nbsp;Wenjian Weng ,&nbsp;Kui Cheng","doi":"10.1016/j.bioadv.2025.214482","DOIUrl":null,"url":null,"abstract":"<div><div>The limited self-healing capacity of critical-sized bone defects presents significant challenges in healing. An effective approach is to regulate the physicochemical properties of biomaterials to mimic the natural bone regenerative microenvironment. In this work, we have prepared Chitosan-Gelatin (CS-Gel) based hydrogel/ Poly(vinylidene fluoride-<em>co</em>-trifluoroethylene) (P(VDF-TrFE)) systems, which provide biomimetic and electric cues for bone regeneration. These hydrogel membranes are constructed on P(VDF-TrFE) layers, and the sustained electrical cues rely on the dipole orientation of P(VDF-TrFE). The bilayer structure decouples electrical stimulation and biocompatibility from chemical composition, allowing the generation of self-sustained electrical cues without altering the functional groups on the hydrogel surface. The results show that these hydrogel/P(VDF-TrFE) systems are more effective in polarizing macrophages toward the alternatively activated (M2) phenotype and promoting stem cell differentiation in vitro. Furthermore, the hydrogel/P(VDF-TrFE) system enhances the expression of anti-inflammatory cytokines and encourages new bone formation in vivo. This work presents a promising strategy to accelerate bone regeneration by combining electrical cues and biomimetic environments, offering a new preparation method for hydrogel/P(VDF-TrFE) systems with self-sustained electrical cues.</div></div>","PeriodicalId":51111,"journal":{"name":"Materials Science & Engineering C-Materials for Biological Applications","volume":"178 ","pages":"Article 214482"},"PeriodicalIF":6.0000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A hydrogel/P(VDF-TrFE) system for enhanced bone regeneration with controllable self-sustained electrical cues\",\"authors\":\"Qin Luo ,&nbsp;Kepeng Hu ,&nbsp;Haoqing Liu ,&nbsp;Xiyue Duan ,&nbsp;Wen Chen ,&nbsp;Xiaoyi Chen ,&nbsp;Xiaojun Long ,&nbsp;Weiming Lin ,&nbsp;Chengwei Wu ,&nbsp;Zhangfa Song ,&nbsp;Chengyun Ning ,&nbsp;Wenjian Weng ,&nbsp;Kui Cheng\",\"doi\":\"10.1016/j.bioadv.2025.214482\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The limited self-healing capacity of critical-sized bone defects presents significant challenges in healing. An effective approach is to regulate the physicochemical properties of biomaterials to mimic the natural bone regenerative microenvironment. In this work, we have prepared Chitosan-Gelatin (CS-Gel) based hydrogel/ Poly(vinylidene fluoride-<em>co</em>-trifluoroethylene) (P(VDF-TrFE)) systems, which provide biomimetic and electric cues for bone regeneration. These hydrogel membranes are constructed on P(VDF-TrFE) layers, and the sustained electrical cues rely on the dipole orientation of P(VDF-TrFE). The bilayer structure decouples electrical stimulation and biocompatibility from chemical composition, allowing the generation of self-sustained electrical cues without altering the functional groups on the hydrogel surface. The results show that these hydrogel/P(VDF-TrFE) systems are more effective in polarizing macrophages toward the alternatively activated (M2) phenotype and promoting stem cell differentiation in vitro. Furthermore, the hydrogel/P(VDF-TrFE) system enhances the expression of anti-inflammatory cytokines and encourages new bone formation in vivo. This work presents a promising strategy to accelerate bone regeneration by combining electrical cues and biomimetic environments, offering a new preparation method for hydrogel/P(VDF-TrFE) systems with self-sustained electrical cues.</div></div>\",\"PeriodicalId\":51111,\"journal\":{\"name\":\"Materials Science & Engineering C-Materials for Biological Applications\",\"volume\":\"178 \",\"pages\":\"Article 214482\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2025-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Science & Engineering C-Materials for Biological Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772950825003097\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science & Engineering C-Materials for Biological Applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772950825003097","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

临界尺寸骨缺损有限的自愈能力对其愈合提出了重大挑战。通过调节生物材料的理化性质来模拟自然骨再生微环境是一种有效的方法。在这项工作中,我们制备了基于壳聚糖-明胶(CS-Gel)的水凝胶/聚(聚氟乙烯-共三氟乙烯)(P(VDF-TrFE))系统,该系统为骨再生提供仿生和电线索。这些水凝胶膜构建在P(VDF-TrFE)层上,持续的电信号依赖于P(VDF-TrFE)的偶极子取向。这种双层结构将电刺激和生物相容性从化学成分中分离出来,允许在不改变水凝胶表面官能团的情况下产生自我维持的电信号。结果表明,这些水凝胶/P(VDF-TrFE)系统在体外更有效地极化巨噬细胞向替代活化(M2)表型发展,促进干细胞分化。此外,水凝胶/P(VDF-TrFE)系统增强抗炎细胞因子的表达,促进体内新骨形成。本研究提出了一种结合电线索和仿生环境来加速骨再生的有希望的策略,为具有自维持电线索的水凝胶/P(VDF-TrFE)系统的制备提供了一种新的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A hydrogel/P(VDF-TrFE) system for enhanced bone regeneration with controllable self-sustained electrical cues

A hydrogel/P(VDF-TrFE) system for enhanced bone regeneration with controllable self-sustained electrical cues
The limited self-healing capacity of critical-sized bone defects presents significant challenges in healing. An effective approach is to regulate the physicochemical properties of biomaterials to mimic the natural bone regenerative microenvironment. In this work, we have prepared Chitosan-Gelatin (CS-Gel) based hydrogel/ Poly(vinylidene fluoride-co-trifluoroethylene) (P(VDF-TrFE)) systems, which provide biomimetic and electric cues for bone regeneration. These hydrogel membranes are constructed on P(VDF-TrFE) layers, and the sustained electrical cues rely on the dipole orientation of P(VDF-TrFE). The bilayer structure decouples electrical stimulation and biocompatibility from chemical composition, allowing the generation of self-sustained electrical cues without altering the functional groups on the hydrogel surface. The results show that these hydrogel/P(VDF-TrFE) systems are more effective in polarizing macrophages toward the alternatively activated (M2) phenotype and promoting stem cell differentiation in vitro. Furthermore, the hydrogel/P(VDF-TrFE) system enhances the expression of anti-inflammatory cytokines and encourages new bone formation in vivo. This work presents a promising strategy to accelerate bone regeneration by combining electrical cues and biomimetic environments, offering a new preparation method for hydrogel/P(VDF-TrFE) systems with self-sustained electrical cues.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
17.80
自引率
0.00%
发文量
501
审稿时长
27 days
期刊介绍: Biomaterials Advances, previously known as Materials Science and Engineering: C-Materials for Biological Applications (P-ISSN: 0928-4931, E-ISSN: 1873-0191). Includes topics at the interface of the biomedical sciences and materials engineering. These topics include: • Bioinspired and biomimetic materials for medical applications • Materials of biological origin for medical applications • Materials for "active" medical applications • Self-assembling and self-healing materials for medical applications • "Smart" (i.e., stimulus-response) materials for medical applications • Ceramic, metallic, polymeric, and composite materials for medical applications • Materials for in vivo sensing • Materials for in vivo imaging • Materials for delivery of pharmacologic agents and vaccines • Novel approaches for characterizing and modeling materials for medical applications Manuscripts on biological topics without a materials science component, or manuscripts on materials science without biological applications, will not be considered for publication in Materials Science and Engineering C. New submissions are first assessed for language, scope and originality (plagiarism check) and can be desk rejected before review if they need English language improvements, are out of scope or present excessive duplication with published sources. Biomaterials Advances sits within Elsevier''s biomaterials science portfolio alongside Biomaterials, Materials Today Bio and Biomaterials and Biosystems. As part of the broader Materials Today family, Biomaterials Advances offers authors rigorous peer review, rapid decisions, and high visibility. We look forward to receiving your submissions!
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信