{"title":"星形代数与中心多项式的概多项式增长","authors":"A. Giambruno , D. La Mattina , C. Polcino Milies","doi":"10.1016/j.jalgebra.2025.08.012","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>A</em> be an algebra with involution ⁎ over a field of characteristic zero. There are three numerical sequences attached to the ⁎-polynomial identities <span><math><msup><mrow><mi>Id</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>(</mo><mi>A</mi><mo>)</mo></math></span> satisfied by <em>A</em>: the sequence of codimensions <span><math><msubsup><mrow><mi>c</mi></mrow><mrow><mi>n</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup><mo>(</mo><mi>A</mi><mo>)</mo></math></span>, the sequence of central codimensions <span><math><msubsup><mrow><mi>c</mi></mrow><mrow><mi>n</mi></mrow><mrow><mo>⁎</mo><mo>.</mo><mi>z</mi></mrow></msubsup><mo>(</mo><mi>A</mi><mo>)</mo></math></span> and the sequence of proper central codimensions <span><math><msubsup><mrow><mi>c</mi></mrow><mrow><mi>n</mi></mrow><mrow><mo>⁎</mo><mo>,</mo><mi>δ</mi></mrow></msubsup><mo>(</mo><mi>A</mi><mo>)</mo></math></span> <span><math><mspace></mspace><mi>n</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>…</mo></math></span>.</div><div>They give a measure of the ⁎-polynomial identities, the central ⁎-polynomials and the proper central ⁎-polynomials of the algebra <em>A</em>.</div><div>It has been proved (<span><span>[9]</span></span>, <span><span>[18]</span></span>) that when <em>A</em> satisfies a non-trivial identity, the three sequences either grow exponentially or are polynomially bounded. Now, an algebra <em>A</em> has almost polynomial growth of the codimensions if <span><math><msubsup><mrow><mi>c</mi></mrow><mrow><mi>n</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup><mo>(</mo><mi>A</mi><mo>)</mo></math></span> grows exponentially and for any algebra <em>B</em> such that <span><math><msup><mrow><mi>Id</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>(</mo><mi>B</mi><mo>)</mo><mo>⊋</mo><msup><mrow><mi>Id</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>(</mo><mi>A</mi><mo>)</mo></math></span>, <span><math><msubsup><mrow><mi>c</mi></mrow><mrow><mi>n</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup><mo>(</mo><mi>B</mi><mo>)</mo></math></span> is polynomially bounded. Similarly we have the definitions of almost polynomial growth of the central codimensions <span><math><msubsup><mrow><mi>c</mi></mrow><mrow><mi>n</mi></mrow><mrow><mo>⁎</mo><mo>.</mo><mi>z</mi></mrow></msubsup><mo>(</mo><mi>A</mi><mo>)</mo></math></span> and of the proper central codimensions <span><math><msubsup><mrow><mi>c</mi></mrow><mrow><mi>n</mi></mrow><mrow><mo>⁎</mo><mo>,</mo><mi>δ</mi></mrow></msubsup><mo>(</mo><mi>A</mi><mo>)</mo></math></span>.</div><div>We aim to classify, up to ⁎-PI-equivalence, the algebras with almost polynomial growth of one of the above codimensions. This has already been done in <span><span>[8]</span></span> regarding the codimensions <span><math><msubsup><mrow><mi>c</mi></mrow><mrow><mi>n</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup><mo>(</mo><mi>A</mi><mo>)</mo></math></span>.</div><div>Here we classify, up to ⁎-PI-equivalence, the algebras having almost polynomial growth of the central ⁎-polynomials by exhibiting three subalgebras of upper triangular matrices. We also construct three more finite dimensional algebras giving the classification of almost polynomial growth of the proper central ⁎-polynomials.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"686 ","pages":"Pages 398-416"},"PeriodicalIF":0.8000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Star-algebras and almost polynomial growth of central polynomials\",\"authors\":\"A. Giambruno , D. La Mattina , C. Polcino Milies\",\"doi\":\"10.1016/j.jalgebra.2025.08.012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <em>A</em> be an algebra with involution ⁎ over a field of characteristic zero. There are three numerical sequences attached to the ⁎-polynomial identities <span><math><msup><mrow><mi>Id</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>(</mo><mi>A</mi><mo>)</mo></math></span> satisfied by <em>A</em>: the sequence of codimensions <span><math><msubsup><mrow><mi>c</mi></mrow><mrow><mi>n</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup><mo>(</mo><mi>A</mi><mo>)</mo></math></span>, the sequence of central codimensions <span><math><msubsup><mrow><mi>c</mi></mrow><mrow><mi>n</mi></mrow><mrow><mo>⁎</mo><mo>.</mo><mi>z</mi></mrow></msubsup><mo>(</mo><mi>A</mi><mo>)</mo></math></span> and the sequence of proper central codimensions <span><math><msubsup><mrow><mi>c</mi></mrow><mrow><mi>n</mi></mrow><mrow><mo>⁎</mo><mo>,</mo><mi>δ</mi></mrow></msubsup><mo>(</mo><mi>A</mi><mo>)</mo></math></span> <span><math><mspace></mspace><mi>n</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>…</mo></math></span>.</div><div>They give a measure of the ⁎-polynomial identities, the central ⁎-polynomials and the proper central ⁎-polynomials of the algebra <em>A</em>.</div><div>It has been proved (<span><span>[9]</span></span>, <span><span>[18]</span></span>) that when <em>A</em> satisfies a non-trivial identity, the three sequences either grow exponentially or are polynomially bounded. Now, an algebra <em>A</em> has almost polynomial growth of the codimensions if <span><math><msubsup><mrow><mi>c</mi></mrow><mrow><mi>n</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup><mo>(</mo><mi>A</mi><mo>)</mo></math></span> grows exponentially and for any algebra <em>B</em> such that <span><math><msup><mrow><mi>Id</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>(</mo><mi>B</mi><mo>)</mo><mo>⊋</mo><msup><mrow><mi>Id</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>(</mo><mi>A</mi><mo>)</mo></math></span>, <span><math><msubsup><mrow><mi>c</mi></mrow><mrow><mi>n</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup><mo>(</mo><mi>B</mi><mo>)</mo></math></span> is polynomially bounded. Similarly we have the definitions of almost polynomial growth of the central codimensions <span><math><msubsup><mrow><mi>c</mi></mrow><mrow><mi>n</mi></mrow><mrow><mo>⁎</mo><mo>.</mo><mi>z</mi></mrow></msubsup><mo>(</mo><mi>A</mi><mo>)</mo></math></span> and of the proper central codimensions <span><math><msubsup><mrow><mi>c</mi></mrow><mrow><mi>n</mi></mrow><mrow><mo>⁎</mo><mo>,</mo><mi>δ</mi></mrow></msubsup><mo>(</mo><mi>A</mi><mo>)</mo></math></span>.</div><div>We aim to classify, up to ⁎-PI-equivalence, the algebras with almost polynomial growth of one of the above codimensions. This has already been done in <span><span>[8]</span></span> regarding the codimensions <span><math><msubsup><mrow><mi>c</mi></mrow><mrow><mi>n</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup><mo>(</mo><mi>A</mi><mo>)</mo></math></span>.</div><div>Here we classify, up to ⁎-PI-equivalence, the algebras having almost polynomial growth of the central ⁎-polynomials by exhibiting three subalgebras of upper triangular matrices. We also construct three more finite dimensional algebras giving the classification of almost polynomial growth of the proper central ⁎-polynomials.</div></div>\",\"PeriodicalId\":14888,\"journal\":{\"name\":\"Journal of Algebra\",\"volume\":\"686 \",\"pages\":\"Pages 398-416\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021869325004909\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869325004909","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
设A是在特征为0的域上具有对合性的代数。有三个数值序列附在由A满足的多项式恒等式Id (A)上:cn (A)的协维序列,cn的中心协维序列。z(A)和适当的中心共维序列cn _,δ(A) n=1,2,....他们给出了代数a的β -多项式恒等式、中心β -多项式和适当中心β -多项式的测度。已经证明([9],[18]),当a满足一个非平凡恒等式时,这三个序列要么呈指数增长,要么呈多项式有界。现在,一个代数A的余维几乎是多项式增长,如果cn (A)呈指数增长,对于任何代数B,使得Id (B)⊋Id (A), cn (B)是多项式有界的。类似地,我们有中心余维cn的几乎多项式增长的定义。z(A)和适当的中心共维cn _,δ(A)。我们的目标是对具有上述余维之一的几乎多项式增长的代数进行分类,直到- pi -等价。这已经在[8]中做过了,关于余维cn _ (A)。在这里,我们通过展示上三角矩阵的三个子代数,对具有中心多项式几乎多项式生长的代数进行了分类,直到- pi -等价。我们还构造了三个有限维代数,给出了适当中心多项式的几乎多项式增长的分类。
Star-algebras and almost polynomial growth of central polynomials
Let A be an algebra with involution ⁎ over a field of characteristic zero. There are three numerical sequences attached to the ⁎-polynomial identities satisfied by A: the sequence of codimensions , the sequence of central codimensions and the sequence of proper central codimensions .
They give a measure of the ⁎-polynomial identities, the central ⁎-polynomials and the proper central ⁎-polynomials of the algebra A.
It has been proved ([9], [18]) that when A satisfies a non-trivial identity, the three sequences either grow exponentially or are polynomially bounded. Now, an algebra A has almost polynomial growth of the codimensions if grows exponentially and for any algebra B such that , is polynomially bounded. Similarly we have the definitions of almost polynomial growth of the central codimensions and of the proper central codimensions .
We aim to classify, up to ⁎-PI-equivalence, the algebras with almost polynomial growth of one of the above codimensions. This has already been done in [8] regarding the codimensions .
Here we classify, up to ⁎-PI-equivalence, the algebras having almost polynomial growth of the central ⁎-polynomials by exhibiting three subalgebras of upper triangular matrices. We also construct three more finite dimensional algebras giving the classification of almost polynomial growth of the proper central ⁎-polynomials.
期刊介绍:
The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.