长期降水操纵增强荒漠草原碳汇强度,差异驱动C3 / C4物种生物量:5年结果

IF 2.5 3区 环境科学与生态学 Q2 ECOLOGY
Xinrui Liu , Zhongwu Wang , Guodong Han , Yuanyuan Cui , Dongjie Hou , Yahong Liu , Pablo Gregorini
{"title":"长期降水操纵增强荒漠草原碳汇强度,差异驱动C3 / C4物种生物量:5年结果","authors":"Xinrui Liu ,&nbsp;Zhongwu Wang ,&nbsp;Guodong Han ,&nbsp;Yuanyuan Cui ,&nbsp;Dongjie Hou ,&nbsp;Yahong Liu ,&nbsp;Pablo Gregorini","doi":"10.1016/j.jaridenv.2025.105467","DOIUrl":null,"url":null,"abstract":"<div><div>Desert steppe ecosystems are very sensitive to climate change. Although precipitation is known to promote carbon exchange and biomass production, quantitative assessments of C<sub>3</sub>/C<sub>4</sub> species dynamics and carbon-water coupling mechanisms under long-term precipitation manipulation remain limited. Here, we conduct a five-year rainfall control experiment in the <em>Stipa breviflora</em> desert in Inner Mongolia, China, employing four treatments: 50 % reduced precipitation, natural precipitation, 50 % increased precipitation, and 100 % (doubled) precipitation. We measured gas exchange in each plot with a portable photosynthesis system Li-6400 and measured aboveground biomass of C<sub>3</sub> and C<sub>4</sub> species during the growing season (May–October). The results demonstrated that elevated precipitation enhanced ecosystem carbon exchange, driven by a linear increase in C<sub>3</sub> species biomass, with a 100 % precipitation increase significantly strengthening carbon sink capacity. Conversely, the carbon sink function of C<sub>4</sub> species declined under drought (reduce precipitation by 50 %). These findings suggest that C<sub>3</sub> biomass dominates carbon-water coupling, while C<sub>4</sub> species buffers drought effects, collectively stabilizing ecosystems under extreme precipitation.</div></div>","PeriodicalId":51080,"journal":{"name":"Journal of Arid Environments","volume":"231 ","pages":"Article 105467"},"PeriodicalIF":2.5000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Long-term precipitation manipulation enhances carbon sink strength and differentially drives C3 / C4 species biomass in a desert steppe: Five-year results\",\"authors\":\"Xinrui Liu ,&nbsp;Zhongwu Wang ,&nbsp;Guodong Han ,&nbsp;Yuanyuan Cui ,&nbsp;Dongjie Hou ,&nbsp;Yahong Liu ,&nbsp;Pablo Gregorini\",\"doi\":\"10.1016/j.jaridenv.2025.105467\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Desert steppe ecosystems are very sensitive to climate change. Although precipitation is known to promote carbon exchange and biomass production, quantitative assessments of C<sub>3</sub>/C<sub>4</sub> species dynamics and carbon-water coupling mechanisms under long-term precipitation manipulation remain limited. Here, we conduct a five-year rainfall control experiment in the <em>Stipa breviflora</em> desert in Inner Mongolia, China, employing four treatments: 50 % reduced precipitation, natural precipitation, 50 % increased precipitation, and 100 % (doubled) precipitation. We measured gas exchange in each plot with a portable photosynthesis system Li-6400 and measured aboveground biomass of C<sub>3</sub> and C<sub>4</sub> species during the growing season (May–October). The results demonstrated that elevated precipitation enhanced ecosystem carbon exchange, driven by a linear increase in C<sub>3</sub> species biomass, with a 100 % precipitation increase significantly strengthening carbon sink capacity. Conversely, the carbon sink function of C<sub>4</sub> species declined under drought (reduce precipitation by 50 %). These findings suggest that C<sub>3</sub> biomass dominates carbon-water coupling, while C<sub>4</sub> species buffers drought effects, collectively stabilizing ecosystems under extreme precipitation.</div></div>\",\"PeriodicalId\":51080,\"journal\":{\"name\":\"Journal of Arid Environments\",\"volume\":\"231 \",\"pages\":\"Article 105467\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Arid Environments\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S014019632500151X\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Arid Environments","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S014019632500151X","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

荒漠草原生态系统对气候变化非常敏感。虽然已知降水促进碳交换和生物量生产,但长期降水操纵下C3/C4物种动态和碳-水耦合机制的定量评估仍然有限。在内蒙古短花针茅荒漠进行了为期5年的降雨控制试验,采用减少50%降水、自然降水、增加50%降水和100%(加倍)降水4种处理。利用便携式光合系统Li-6400测量了每个地块的气体交换,并在生长季节(5 - 10月)测量了C3和C4物种的地上生物量。结果表明,降水增加促进了生态系统碳交换,在C3物种生物量线性增加的驱动下,降水量增加100%显著增强了碳汇容量。相反,干旱条件下C4树种的碳汇功能下降(降水减少50%)。这些结果表明,C3生物量主导碳水耦合,而C4物种缓冲干旱效应,共同稳定极端降水下的生态系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Long-term precipitation manipulation enhances carbon sink strength and differentially drives C3 / C4 species biomass in a desert steppe: Five-year results

Long-term precipitation manipulation enhances carbon sink strength and differentially drives C3 / C4 species biomass in a desert steppe: Five-year results
Desert steppe ecosystems are very sensitive to climate change. Although precipitation is known to promote carbon exchange and biomass production, quantitative assessments of C3/C4 species dynamics and carbon-water coupling mechanisms under long-term precipitation manipulation remain limited. Here, we conduct a five-year rainfall control experiment in the Stipa breviflora desert in Inner Mongolia, China, employing four treatments: 50 % reduced precipitation, natural precipitation, 50 % increased precipitation, and 100 % (doubled) precipitation. We measured gas exchange in each plot with a portable photosynthesis system Li-6400 and measured aboveground biomass of C3 and C4 species during the growing season (May–October). The results demonstrated that elevated precipitation enhanced ecosystem carbon exchange, driven by a linear increase in C3 species biomass, with a 100 % precipitation increase significantly strengthening carbon sink capacity. Conversely, the carbon sink function of C4 species declined under drought (reduce precipitation by 50 %). These findings suggest that C3 biomass dominates carbon-water coupling, while C4 species buffers drought effects, collectively stabilizing ecosystems under extreme precipitation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Arid Environments
Journal of Arid Environments 环境科学-环境科学
CiteScore
5.70
自引率
3.70%
发文量
144
审稿时长
55 days
期刊介绍: The Journal of Arid Environments is an international journal publishing original scientific and technical research articles on physical, biological and cultural aspects of arid, semi-arid, and desert environments. As a forum of multi-disciplinary and interdisciplinary dialogue it addresses research on all aspects of arid environments and their past, present and future use.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信