欧几里德三维空间中由积分二法线曲线生成的Smarandache直纹曲面的几何性质

Q1 Mathematics
Ayman Elsharkawy , Hanene Hamdani , Clemente Cesarano , Noha Elsharkawy
{"title":"欧几里德三维空间中由积分二法线曲线生成的Smarandache直纹曲面的几何性质","authors":"Ayman Elsharkawy ,&nbsp;Hanene Hamdani ,&nbsp;Clemente Cesarano ,&nbsp;Noha Elsharkawy","doi":"10.1016/j.padiff.2025.101298","DOIUrl":null,"url":null,"abstract":"<div><div>This paper investigates the geometric properties of Smarandache ruled surfaces generated by integral binormal curves in the Euclidean 3-space <span><math><msup><mrow><mi>E</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>. Specifically, we study four types of Smarandache ruled surfaces: the <span><math><mrow><mi>t</mi><mi>n</mi></mrow></math></span>, <span><math><mrow><mi>t</mi><mi>b</mi></mrow></math></span>, <span><math><mrow><mi>n</mi><mi>b</mi></mrow></math></span>, and <span><math><mrow><mi>t</mi><mi>n</mi><mi>b</mi></mrow></math></span> surfaces, each defined by different combinations of the tangent, normal, and binormal vectors of the integral curves. For each type of surface, we derive the parametric representations and compute the fundamental geometric properties, including the striction lines, distribution parameters, and the first and second fundamental forms. Additionally, we provide explicit expressions for the Gaussian and mean curvatures, which characterize the local shape of the surfaces. We also analyze the geodesic curvature, normal curvature, and geodesic torsion associated with the base curves on these surfaces. Furthermore, we establish necessary and sufficient conditions for these surfaces to be developable or minimal. The paper concludes with detailed conditions under which the base curves can be classified as geodesic or asymptotic lines on the surfaces. The results are supported by rigorous proofs and illustrative examples, offering a comprehensive understanding of the geometric behavior of these Smarandache ruled surfaces.</div></div>","PeriodicalId":34531,"journal":{"name":"Partial Differential Equations in Applied Mathematics","volume":"15 ","pages":"Article 101298"},"PeriodicalIF":0.0000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Geometric properties of Smarandache ruled surfaces generated by integral binormal curves in Euclidean 3-space\",\"authors\":\"Ayman Elsharkawy ,&nbsp;Hanene Hamdani ,&nbsp;Clemente Cesarano ,&nbsp;Noha Elsharkawy\",\"doi\":\"10.1016/j.padiff.2025.101298\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper investigates the geometric properties of Smarandache ruled surfaces generated by integral binormal curves in the Euclidean 3-space <span><math><msup><mrow><mi>E</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>. Specifically, we study four types of Smarandache ruled surfaces: the <span><math><mrow><mi>t</mi><mi>n</mi></mrow></math></span>, <span><math><mrow><mi>t</mi><mi>b</mi></mrow></math></span>, <span><math><mrow><mi>n</mi><mi>b</mi></mrow></math></span>, and <span><math><mrow><mi>t</mi><mi>n</mi><mi>b</mi></mrow></math></span> surfaces, each defined by different combinations of the tangent, normal, and binormal vectors of the integral curves. For each type of surface, we derive the parametric representations and compute the fundamental geometric properties, including the striction lines, distribution parameters, and the first and second fundamental forms. Additionally, we provide explicit expressions for the Gaussian and mean curvatures, which characterize the local shape of the surfaces. We also analyze the geodesic curvature, normal curvature, and geodesic torsion associated with the base curves on these surfaces. Furthermore, we establish necessary and sufficient conditions for these surfaces to be developable or minimal. The paper concludes with detailed conditions under which the base curves can be classified as geodesic or asymptotic lines on the surfaces. The results are supported by rigorous proofs and illustrative examples, offering a comprehensive understanding of the geometric behavior of these Smarandache ruled surfaces.</div></div>\",\"PeriodicalId\":34531,\"journal\":{\"name\":\"Partial Differential Equations in Applied Mathematics\",\"volume\":\"15 \",\"pages\":\"Article 101298\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Partial Differential Equations in Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666818125002244\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Partial Differential Equations in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666818125002244","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

研究了欧几里得三维空间E3中由积分二法线曲线生成的Smarandache直纹曲面的几何性质。具体来说,我们研究了四种类型的Smarandache直棱曲面:tn、tb、nb和tnb曲面,每个曲面由积分曲线的切向量、法向量和二法向量的不同组合定义。对于每种类型的曲面,我们推导了参数表示并计算了基本几何性质,包括约束线,分布参数以及第一和第二基本形式。此外,我们提供了高斯曲率和平均曲率的显式表达式,它们表征了曲面的局部形状。我们还分析了与这些曲面上的基曲线相关的测地线曲率、法曲率和测地线扭转。此外,我们还建立了这些曲面可展或最小的充分必要条件。最后给出了基曲线在曲面上可划分为测地线或渐近线的具体条件。这些结果得到了严格的证明和说明性例子的支持,提供了对这些Smarandache直纹曲面几何行为的全面理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Geometric properties of Smarandache ruled surfaces generated by integral binormal curves in Euclidean 3-space
This paper investigates the geometric properties of Smarandache ruled surfaces generated by integral binormal curves in the Euclidean 3-space E3. Specifically, we study four types of Smarandache ruled surfaces: the tn, tb, nb, and tnb surfaces, each defined by different combinations of the tangent, normal, and binormal vectors of the integral curves. For each type of surface, we derive the parametric representations and compute the fundamental geometric properties, including the striction lines, distribution parameters, and the first and second fundamental forms. Additionally, we provide explicit expressions for the Gaussian and mean curvatures, which characterize the local shape of the surfaces. We also analyze the geodesic curvature, normal curvature, and geodesic torsion associated with the base curves on these surfaces. Furthermore, we establish necessary and sufficient conditions for these surfaces to be developable or minimal. The paper concludes with detailed conditions under which the base curves can be classified as geodesic or asymptotic lines on the surfaces. The results are supported by rigorous proofs and illustrative examples, offering a comprehensive understanding of the geometric behavior of these Smarandache ruled surfaces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
138
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信