晶粒尺寸和吸收体厚度比单独控制取向制备高性能Sb2Se3太阳能电池

IF 4.6 2区 化学 Q2 CHEMISTRY, PHYSICAL
Shaobo Zhang*, Chengjun Wu, Junjie Zeng, Xiangdong Meng, Ruijin Hu*, Junzhuan Wang and Kunji Chen, 
{"title":"晶粒尺寸和吸收体厚度比单独控制取向制备高性能Sb2Se3太阳能电池","authors":"Shaobo Zhang*,&nbsp;Chengjun Wu,&nbsp;Junjie Zeng,&nbsp;Xiangdong Meng,&nbsp;Ruijin Hu*,&nbsp;Junzhuan Wang and Kunji Chen,&nbsp;","doi":"10.1021/acs.jpclett.5c02137","DOIUrl":null,"url":null,"abstract":"<p >Although substantial research efforts have been devoted to controlling and modulating the grain orientations of Sb<sub>2</sub>Se<sub>3</sub> thin films to improve efficiency, a theoretical investigation into how grain orientation affects photovoltaic performance remains lacking. This lag in theoretical investigations hinders practical design and fabrication for high-performance Sb<sub>2</sub>Se<sub>3</sub> thin-film solar cells. Herein, finite-element simulations have been performed, especially first taking unique anisotropic charge-transport properties into account, to reveal the fundamental relationship between grain orientation and device performance, demonstrating a 125% increase in power conversion efficiency (PCE) when the preferred orientation changes from [010] to [001]. Critically, we demonstrate that sufficiently large grain sizes (&gt;1.5 μm) or thin absorber thicknesses (&lt;0.4 μm) can effectively suppress the negative effect of nonpreferred grain orientations, particularly in multiorientation systems. Thus, the PCE demonstrates a maximum value of 18.52% for Sb<sub>2</sub>Se<sub>3</sub> thin-film solar cells with 2-μm grains when the thickness = 0.6 μm, accomplished with a <i>V</i><sub>OC</sub> of 0.75 V, <i>J</i><sub>SC</sub> of 31.64 mA/cm<sup>2</sup>, and FF of 76.35%. These results establish a quantitative understanding of the effect of grain orientations on device performance and propose a practical strategy for fabricating high-efficiency Sb<sub>2</sub>Se<sub>3</sub> thin-film solar cells in a low-cost, controllable process.</p>","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"16 35","pages":"8928–8935"},"PeriodicalIF":4.6000,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Grain Size and Absorber Thickness Than Solely Controlling Orientation for Fabricating High-Performance Sb2Se3 Solar Cells\",\"authors\":\"Shaobo Zhang*,&nbsp;Chengjun Wu,&nbsp;Junjie Zeng,&nbsp;Xiangdong Meng,&nbsp;Ruijin Hu*,&nbsp;Junzhuan Wang and Kunji Chen,&nbsp;\",\"doi\":\"10.1021/acs.jpclett.5c02137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Although substantial research efforts have been devoted to controlling and modulating the grain orientations of Sb<sub>2</sub>Se<sub>3</sub> thin films to improve efficiency, a theoretical investigation into how grain orientation affects photovoltaic performance remains lacking. This lag in theoretical investigations hinders practical design and fabrication for high-performance Sb<sub>2</sub>Se<sub>3</sub> thin-film solar cells. Herein, finite-element simulations have been performed, especially first taking unique anisotropic charge-transport properties into account, to reveal the fundamental relationship between grain orientation and device performance, demonstrating a 125% increase in power conversion efficiency (PCE) when the preferred orientation changes from [010] to [001]. Critically, we demonstrate that sufficiently large grain sizes (&gt;1.5 μm) or thin absorber thicknesses (&lt;0.4 μm) can effectively suppress the negative effect of nonpreferred grain orientations, particularly in multiorientation systems. Thus, the PCE demonstrates a maximum value of 18.52% for Sb<sub>2</sub>Se<sub>3</sub> thin-film solar cells with 2-μm grains when the thickness = 0.6 μm, accomplished with a <i>V</i><sub>OC</sub> of 0.75 V, <i>J</i><sub>SC</sub> of 31.64 mA/cm<sup>2</sup>, and FF of 76.35%. These results establish a quantitative understanding of the effect of grain orientations on device performance and propose a practical strategy for fabricating high-efficiency Sb<sub>2</sub>Se<sub>3</sub> thin-film solar cells in a low-cost, controllable process.</p>\",\"PeriodicalId\":62,\"journal\":{\"name\":\"The Journal of Physical Chemistry Letters\",\"volume\":\"16 35\",\"pages\":\"8928–8935\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry Letters\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jpclett.5c02137\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpclett.5c02137","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

虽然已经有大量的研究工作致力于控制和调节Sb2Se3薄膜的晶粒取向以提高效率,但关于晶粒取向如何影响光伏性能的理论研究仍然缺乏。这种理论研究的滞后阻碍了高性能Sb2Se3薄膜太阳能电池的实际设计和制造。本文进行了有限元模拟,特别是首先考虑了独特的各向异性电荷输运特性,揭示了晶粒取向与器件性能之间的基本关系,表明当首选取向从[010]改变为[001]时,功率转换效率(PCE)提高了125%。重要的是,我们证明了足够大的晶粒尺寸(>1.5 μm)或薄的吸收剂厚度(<0.4 μm)可以有效地抑制非优选晶粒取向的负面影响,特别是在多取向体系中。结果表明,当粒径为2 μm的Sb2Se3薄膜太阳电池厚度为0.6 μm时,PCE最大值为18.52%,VOC为0.75 V, JSC为31.64 mA/cm2, FF为76.35%。这些结果建立了对晶粒取向对器件性能影响的定量理解,并提出了以低成本、可控的工艺制造高效Sb2Se3薄膜太阳能电池的实用策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Grain Size and Absorber Thickness Than Solely Controlling Orientation for Fabricating High-Performance Sb2Se3 Solar Cells

Grain Size and Absorber Thickness Than Solely Controlling Orientation for Fabricating High-Performance Sb2Se3 Solar Cells

Although substantial research efforts have been devoted to controlling and modulating the grain orientations of Sb2Se3 thin films to improve efficiency, a theoretical investigation into how grain orientation affects photovoltaic performance remains lacking. This lag in theoretical investigations hinders practical design and fabrication for high-performance Sb2Se3 thin-film solar cells. Herein, finite-element simulations have been performed, especially first taking unique anisotropic charge-transport properties into account, to reveal the fundamental relationship between grain orientation and device performance, demonstrating a 125% increase in power conversion efficiency (PCE) when the preferred orientation changes from [010] to [001]. Critically, we demonstrate that sufficiently large grain sizes (>1.5 μm) or thin absorber thicknesses (<0.4 μm) can effectively suppress the negative effect of nonpreferred grain orientations, particularly in multiorientation systems. Thus, the PCE demonstrates a maximum value of 18.52% for Sb2Se3 thin-film solar cells with 2-μm grains when the thickness = 0.6 μm, accomplished with a VOC of 0.75 V, JSC of 31.64 mA/cm2, and FF of 76.35%. These results establish a quantitative understanding of the effect of grain orientations on device performance and propose a practical strategy for fabricating high-efficiency Sb2Se3 thin-film solar cells in a low-cost, controllable process.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The Journal of Physical Chemistry Letters
The Journal of Physical Chemistry Letters CHEMISTRY, PHYSICAL-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
9.60
自引率
7.00%
发文量
1519
审稿时长
1.6 months
期刊介绍: The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信