Maria Ibáñez*, Simon C. Boehme, Raffaella Buonsanti, Jonathan De Roo, Delia J. Milliron, Sandrine Ithurria, Andrey L. Rogach, Andreu Cabot, Maksym Yarema, Brandi M. Cossairt, Peter Reiss, Dmitri V. Talapin, Loredana Protesescu, Zeger Hens, Ivan Infante, Maryna I. Bodnarchuk, Xingchen Ye, Yuanyuan Wang, Hao Zhang, Emmanuel Lhuillier, Victor I. Klimov, Hendrik Utzat, Gabriele Rainò, Cherie R. Kagan, Matteo Cargnello, Jae Sung Son and Maksym V. Kovalenko*,
{"title":"纳米晶体的纳米科学展望:2025年版","authors":"Maria Ibáñez*, Simon C. Boehme, Raffaella Buonsanti, Jonathan De Roo, Delia J. Milliron, Sandrine Ithurria, Andrey L. Rogach, Andreu Cabot, Maksym Yarema, Brandi M. Cossairt, Peter Reiss, Dmitri V. Talapin, Loredana Protesescu, Zeger Hens, Ivan Infante, Maryna I. Bodnarchuk, Xingchen Ye, Yuanyuan Wang, Hao Zhang, Emmanuel Lhuillier, Victor I. Klimov, Hendrik Utzat, Gabriele Rainò, Cherie R. Kagan, Matteo Cargnello, Jae Sung Son and Maksym V. Kovalenko*, ","doi":"10.1021/acsnano.5c07838","DOIUrl":null,"url":null,"abstract":"<p >Nanocrystals (NCs) of various compositions have made important contributions to science and technology, with their impact recognized by the 2023 Nobel Prize in Chemistry for the discovery and synthesis of semiconductor quantum dots (QDs). Over four decades of research into NCs has led to numerous advancements in diverse fields, such as optoelectronics, catalysis, energy, medicine, and recently, quantum information and computing. The last 10 years since the predecessor perspective “Prospect of Nanoscience with Nanocrystals” was published in ACS Nano have seen NC research continuously evolve, yielding critical advances in fundamental understanding and practical applications. Mechanistic insights into NC formation have translated into precision control over NC size, shape, and composition. Emerging synthesis techniques have broadened the landscape of compounds obtainable in colloidal NC form. Sophistication in surface chemistry, jointly bolstered by theoretical models and experimental findings, has facilitated refined control over NC properties and represents a trusted gateway to enhanced NC stability and processability. The assembly of NCs into superlattices, along with two-dimensional (2D) photolithography and three-dimensional (3D) printing, has expanded their utility in creating materials with tailored properties. Applications of NCs are also flourishing, consolidating progress in fields targeted early on, such as optoelectronics and catalysis, and extending into areas ranging from quantum technology to phase-change memories. In this perspective, we review the extensive progress in research on NCs over the past decade and highlight key areas where future research may bring further breakthroughs.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"19 36","pages":"31969–32051"},"PeriodicalIF":16.0000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acsnano.5c07838","citationCount":"0","resultStr":"{\"title\":\"Prospects of Nanoscience with Nanocrystals: 2025 Edition\",\"authors\":\"Maria Ibáñez*, Simon C. Boehme, Raffaella Buonsanti, Jonathan De Roo, Delia J. Milliron, Sandrine Ithurria, Andrey L. Rogach, Andreu Cabot, Maksym Yarema, Brandi M. Cossairt, Peter Reiss, Dmitri V. Talapin, Loredana Protesescu, Zeger Hens, Ivan Infante, Maryna I. Bodnarchuk, Xingchen Ye, Yuanyuan Wang, Hao Zhang, Emmanuel Lhuillier, Victor I. Klimov, Hendrik Utzat, Gabriele Rainò, Cherie R. Kagan, Matteo Cargnello, Jae Sung Son and Maksym V. Kovalenko*, \",\"doi\":\"10.1021/acsnano.5c07838\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Nanocrystals (NCs) of various compositions have made important contributions to science and technology, with their impact recognized by the 2023 Nobel Prize in Chemistry for the discovery and synthesis of semiconductor quantum dots (QDs). Over four decades of research into NCs has led to numerous advancements in diverse fields, such as optoelectronics, catalysis, energy, medicine, and recently, quantum information and computing. The last 10 years since the predecessor perspective “Prospect of Nanoscience with Nanocrystals” was published in ACS Nano have seen NC research continuously evolve, yielding critical advances in fundamental understanding and practical applications. Mechanistic insights into NC formation have translated into precision control over NC size, shape, and composition. Emerging synthesis techniques have broadened the landscape of compounds obtainable in colloidal NC form. Sophistication in surface chemistry, jointly bolstered by theoretical models and experimental findings, has facilitated refined control over NC properties and represents a trusted gateway to enhanced NC stability and processability. The assembly of NCs into superlattices, along with two-dimensional (2D) photolithography and three-dimensional (3D) printing, has expanded their utility in creating materials with tailored properties. Applications of NCs are also flourishing, consolidating progress in fields targeted early on, such as optoelectronics and catalysis, and extending into areas ranging from quantum technology to phase-change memories. In this perspective, we review the extensive progress in research on NCs over the past decade and highlight key areas where future research may bring further breakthroughs.</p>\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"19 36\",\"pages\":\"31969–32051\"},\"PeriodicalIF\":16.0000,\"publicationDate\":\"2025-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/pdf/10.1021/acsnano.5c07838\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsnano.5c07838\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.5c07838","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Prospects of Nanoscience with Nanocrystals: 2025 Edition
Nanocrystals (NCs) of various compositions have made important contributions to science and technology, with their impact recognized by the 2023 Nobel Prize in Chemistry for the discovery and synthesis of semiconductor quantum dots (QDs). Over four decades of research into NCs has led to numerous advancements in diverse fields, such as optoelectronics, catalysis, energy, medicine, and recently, quantum information and computing. The last 10 years since the predecessor perspective “Prospect of Nanoscience with Nanocrystals” was published in ACS Nano have seen NC research continuously evolve, yielding critical advances in fundamental understanding and practical applications. Mechanistic insights into NC formation have translated into precision control over NC size, shape, and composition. Emerging synthesis techniques have broadened the landscape of compounds obtainable in colloidal NC form. Sophistication in surface chemistry, jointly bolstered by theoretical models and experimental findings, has facilitated refined control over NC properties and represents a trusted gateway to enhanced NC stability and processability. The assembly of NCs into superlattices, along with two-dimensional (2D) photolithography and three-dimensional (3D) printing, has expanded their utility in creating materials with tailored properties. Applications of NCs are also flourishing, consolidating progress in fields targeted early on, such as optoelectronics and catalysis, and extending into areas ranging from quantum technology to phase-change memories. In this perspective, we review the extensive progress in research on NCs over the past decade and highlight key areas where future research may bring further breakthroughs.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.