从废锂离子电池中选择性回收锂的氧化还原活性冠醚共聚物

IF 18.2 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Nayeong Kim, Johannes Elbert, Hee-Eun Kim, Chengxian Wu and Xiao Su*, 
{"title":"从废锂离子电池中选择性回收锂的氧化还原活性冠醚共聚物","authors":"Nayeong Kim,&nbsp;Johannes Elbert,&nbsp;Hee-Eun Kim,&nbsp;Chengxian Wu and Xiao Su*,&nbsp;","doi":"10.1021/acsenergylett.5c01901","DOIUrl":null,"url":null,"abstract":"<p >The increasing demand for lithium, alongside concerns over resource scarcity and supply chain risks, has driven the need for alternative lithium sources, particularly from spent lithium-ion batteries (LIBs). Here, we introduce a redox-active crown ether copolymer designed for highly selective and electrochemically reversible lithium recovery from organic LIB leachates. A lithium-selective moiety, (12-crown-4)methyl methacrylate (12C4MA), is combined with a redox-active moiety, ferrocenylpropyl methacrylamide (FPMAm), into a redox copolymer electrosorbent to replace acid-based regeneration with electrostatic repulsion. The redox response enhances lithium ingress into the polymer, doubling lithium uptake (0.58 mol<sub>Li</sub>/mol<sub>CrE</sub>) and enabling electrochemical regeneration upon the FPMAm oxidation. Our system exhibits exclusive lithium uptake, even in complex leachates containing competing metals (e.g., iron, nickel, and cobalt) and organic degradants. Techno-economic analysis highlights high energy efficiency and competitive lithium pricing to the market value (∼$12.7 per kg<sub>Li</sub>). Overall, our work demonstrates a scalable, electrified adsorbent platform for sustainable and chemical-free critical metal recovery.</p>","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":"10 9","pages":"4655–4664"},"PeriodicalIF":18.2000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Redox-Active Crown Ether Copolymer for Selective Lithium Recovery from Spent Lithium-Ion Batteries\",\"authors\":\"Nayeong Kim,&nbsp;Johannes Elbert,&nbsp;Hee-Eun Kim,&nbsp;Chengxian Wu and Xiao Su*,&nbsp;\",\"doi\":\"10.1021/acsenergylett.5c01901\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The increasing demand for lithium, alongside concerns over resource scarcity and supply chain risks, has driven the need for alternative lithium sources, particularly from spent lithium-ion batteries (LIBs). Here, we introduce a redox-active crown ether copolymer designed for highly selective and electrochemically reversible lithium recovery from organic LIB leachates. A lithium-selective moiety, (12-crown-4)methyl methacrylate (12C4MA), is combined with a redox-active moiety, ferrocenylpropyl methacrylamide (FPMAm), into a redox copolymer electrosorbent to replace acid-based regeneration with electrostatic repulsion. The redox response enhances lithium ingress into the polymer, doubling lithium uptake (0.58 mol<sub>Li</sub>/mol<sub>CrE</sub>) and enabling electrochemical regeneration upon the FPMAm oxidation. Our system exhibits exclusive lithium uptake, even in complex leachates containing competing metals (e.g., iron, nickel, and cobalt) and organic degradants. Techno-economic analysis highlights high energy efficiency and competitive lithium pricing to the market value (∼$12.7 per kg<sub>Li</sub>). Overall, our work demonstrates a scalable, electrified adsorbent platform for sustainable and chemical-free critical metal recovery.</p>\",\"PeriodicalId\":16,\"journal\":{\"name\":\"ACS Energy Letters \",\"volume\":\"10 9\",\"pages\":\"4655–4664\"},\"PeriodicalIF\":18.2000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Energy Letters \",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsenergylett.5c01901\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Energy Letters ","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsenergylett.5c01901","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

对锂的需求不断增加,加上对资源稀缺和供应链风险的担忧,推动了对替代锂源的需求,特别是对废锂离子电池(lib)的需求。在这里,我们介绍了一种具有氧化还原活性的冠醚共聚物,该共聚物设计用于从有机LIB渗滤液中高选择性和电化学可逆的锂回收。锂选择性部分(12-冠-4)甲基丙烯酸甲酯(12C4MA)与氧化还原活性部分二茂铁丙基甲基丙烯酰胺(FPMAm)结合,形成氧化还原共聚物电吸附剂,以静电斥力取代酸基再生。氧化还原反应增强了锂进入聚合物,使锂吸收量增加一倍(0.58 molLi/molCrE),并使FPMAm氧化后的电化学再生成为可能。即使在含有竞争性金属(如铁、镍和钴)和有机降解剂的复杂渗滤液中,我们的系统也具有独特的锂吸收率。技术经济分析强调了高能效和具有竞争力的锂定价(每kgLi约12.7美元)。总的来说,我们的工作展示了一个可扩展的、电气化的吸附剂平台,用于可持续的、无化学的关键金属回收。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Redox-Active Crown Ether Copolymer for Selective Lithium Recovery from Spent Lithium-Ion Batteries

Redox-Active Crown Ether Copolymer for Selective Lithium Recovery from Spent Lithium-Ion Batteries

The increasing demand for lithium, alongside concerns over resource scarcity and supply chain risks, has driven the need for alternative lithium sources, particularly from spent lithium-ion batteries (LIBs). Here, we introduce a redox-active crown ether copolymer designed for highly selective and electrochemically reversible lithium recovery from organic LIB leachates. A lithium-selective moiety, (12-crown-4)methyl methacrylate (12C4MA), is combined with a redox-active moiety, ferrocenylpropyl methacrylamide (FPMAm), into a redox copolymer electrosorbent to replace acid-based regeneration with electrostatic repulsion. The redox response enhances lithium ingress into the polymer, doubling lithium uptake (0.58 molLi/molCrE) and enabling electrochemical regeneration upon the FPMAm oxidation. Our system exhibits exclusive lithium uptake, even in complex leachates containing competing metals (e.g., iron, nickel, and cobalt) and organic degradants. Techno-economic analysis highlights high energy efficiency and competitive lithium pricing to the market value (∼$12.7 per kgLi). Overall, our work demonstrates a scalable, electrified adsorbent platform for sustainable and chemical-free critical metal recovery.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Energy Letters
ACS Energy Letters Energy-Renewable Energy, Sustainability and the Environment
CiteScore
31.20
自引率
5.00%
发文量
469
审稿时长
1 months
期刊介绍: ACS Energy Letters is a monthly journal that publishes papers reporting new scientific advances in energy research. The journal focuses on topics that are of interest to scientists working in the fundamental and applied sciences. Rapid publication is a central criterion for acceptance, and the journal is known for its quick publication times, with an average of 4-6 weeks from submission to web publication in As Soon As Publishable format. ACS Energy Letters is ranked as the number one journal in the Web of Science Electrochemistry category. It also ranks within the top 10 journals for Physical Chemistry, Energy & Fuels, and Nanoscience & Nanotechnology. The journal offers several types of articles, including Letters, Energy Express, Perspectives, Reviews, Editorials, Viewpoints and Energy Focus. Additionally, authors have the option to submit videos that summarize or support the information presented in a Perspective or Review article, which can be highlighted on the journal's website. ACS Energy Letters is abstracted and indexed in Chemical Abstracts Service/SciFinder, EBSCO-summon, PubMed, Web of Science, Scopus and Portico.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信