层状钙钛矿中极化子势垒的阳离子调谐用于光自旋寿命控制

IF 18.2 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Valentino Romano, Martin Hörmann, Anna Stadlbauer, Edoardo Mosconi, Luca Gregori, Filippo De Angelis, Felix Deschler*, Giulio Cerullo and Franco V. A. Camargo*, 
{"title":"层状钙钛矿中极化子势垒的阳离子调谐用于光自旋寿命控制","authors":"Valentino Romano,&nbsp;Martin Hörmann,&nbsp;Anna Stadlbauer,&nbsp;Edoardo Mosconi,&nbsp;Luca Gregori,&nbsp;Filippo De Angelis,&nbsp;Felix Deschler*,&nbsp;Giulio Cerullo and Franco V. A. Camargo*,&nbsp;","doi":"10.1021/acsenergylett.5c01236","DOIUrl":null,"url":null,"abstract":"<p >Layered metal-halide perovskites (L-MHPs) form self-assembled quantum wells with strongly bound excitons and electron–phonon interactions that promote polaron formation. Due to spin–orbit coupling and Rashba-type spin-splitting of the electronic bands, spin-polarized excitons can be photoexcited with circularly polarized light, making these materials promising in opto-spintronics. Recently, we have shown that photoexcitation with excess energy extends spin-lifetimes in (BA)<sub>2</sub>FAPb<sub>2</sub>I<sub>7</sub> by over 2 orders of magnitude compared to resonant excitation and attributed this to polaron formation. Here, we study spin-lifetimes in L-MHPs with different A-site cations: (Hexa)<sub>2</sub>MAPb<sub>2</sub>I<sub>7</sub>, (Hexa)<sub>2</sub>FAPb<sub>2</sub>I<sub>7</sub>, (Hexa)<sub>2</sub>CsPb<sub>2</sub>I<sub>7</sub> (Hexa: hexylammonium, MA: methylammonium, FA: formamidinium, Cs: cesium). We find that all studied materials exhibit vastly extended spin-lifetimes under excess-energy excitation, but that the polaron formation barrier is reduced with increasing polarity of the A-site cations. First-principles calculations show that (Hexa)<sub>2</sub>MAPb<sub>2</sub>I<sub>7</sub> has the most stable polarons and (Hexa)<sub>2</sub>CsPb<sub>2</sub>I<sub>7</sub>, the least. Our findings demonstrate tuning of optically controlled exciton spin-lifetimes in L-MHPs through composition engineering, providing a pathway toward optimized materials for spintronics.</p>","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":"10 9","pages":"4636–4643"},"PeriodicalIF":18.2000,"publicationDate":"2025-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acsenergylett.5c01236","citationCount":"0","resultStr":"{\"title\":\"Cation Tuning of Polaron Barriers in Layered Perovskites for Optical Spin Lifetime Control\",\"authors\":\"Valentino Romano,&nbsp;Martin Hörmann,&nbsp;Anna Stadlbauer,&nbsp;Edoardo Mosconi,&nbsp;Luca Gregori,&nbsp;Filippo De Angelis,&nbsp;Felix Deschler*,&nbsp;Giulio Cerullo and Franco V. A. Camargo*,&nbsp;\",\"doi\":\"10.1021/acsenergylett.5c01236\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Layered metal-halide perovskites (L-MHPs) form self-assembled quantum wells with strongly bound excitons and electron–phonon interactions that promote polaron formation. Due to spin–orbit coupling and Rashba-type spin-splitting of the electronic bands, spin-polarized excitons can be photoexcited with circularly polarized light, making these materials promising in opto-spintronics. Recently, we have shown that photoexcitation with excess energy extends spin-lifetimes in (BA)<sub>2</sub>FAPb<sub>2</sub>I<sub>7</sub> by over 2 orders of magnitude compared to resonant excitation and attributed this to polaron formation. Here, we study spin-lifetimes in L-MHPs with different A-site cations: (Hexa)<sub>2</sub>MAPb<sub>2</sub>I<sub>7</sub>, (Hexa)<sub>2</sub>FAPb<sub>2</sub>I<sub>7</sub>, (Hexa)<sub>2</sub>CsPb<sub>2</sub>I<sub>7</sub> (Hexa: hexylammonium, MA: methylammonium, FA: formamidinium, Cs: cesium). We find that all studied materials exhibit vastly extended spin-lifetimes under excess-energy excitation, but that the polaron formation barrier is reduced with increasing polarity of the A-site cations. First-principles calculations show that (Hexa)<sub>2</sub>MAPb<sub>2</sub>I<sub>7</sub> has the most stable polarons and (Hexa)<sub>2</sub>CsPb<sub>2</sub>I<sub>7</sub>, the least. Our findings demonstrate tuning of optically controlled exciton spin-lifetimes in L-MHPs through composition engineering, providing a pathway toward optimized materials for spintronics.</p>\",\"PeriodicalId\":16,\"journal\":{\"name\":\"ACS Energy Letters \",\"volume\":\"10 9\",\"pages\":\"4636–4643\"},\"PeriodicalIF\":18.2000,\"publicationDate\":\"2025-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/pdf/10.1021/acsenergylett.5c01236\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Energy Letters \",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsenergylett.5c01236\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Energy Letters ","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsenergylett.5c01236","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

层状金属卤化物钙钛矿(L-MHPs)形成具有强束缚激子和电子-声子相互作用的自组装量子阱,促进极化子的形成。由于自旋轨道耦合和电子带的rashba型自旋分裂,自旋极化激子可以被圆偏振光激发,这使得这些材料在光自旋电子学中具有广阔的应用前景。最近,我们已经证明,与共振激发相比,具有多余能量的光激发使(BA)2FAPb2I7的自旋寿命延长了2个数量级以上,并将其归因于极化子的形成。本文研究了含不同a位阳离子(Hexa)2MAPb2I7、(Hexa)2FAPb2I7、(Hexa)2CsPb2I7 (Hexa:己基铵、MA:甲基铵、FA:甲酰胺、Cs:铯)的L-MHPs的自旋寿命。我们发现所有研究的材料在超能激发下都表现出极大延长的自旋寿命,但极化子形成势垒随着a位阳离子极性的增加而降低。第一性原理计算表明(Hexa)2MAPb2I7具有最稳定的极化子,而(Hexa)2CsPb2I7具有最不稳定的极化子。我们的研究结果表明,通过组成工程可以调节L-MHPs中光控激子的自旋寿命,为自旋电子学优化材料提供了一条途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cation Tuning of Polaron Barriers in Layered Perovskites for Optical Spin Lifetime Control

Layered metal-halide perovskites (L-MHPs) form self-assembled quantum wells with strongly bound excitons and electron–phonon interactions that promote polaron formation. Due to spin–orbit coupling and Rashba-type spin-splitting of the electronic bands, spin-polarized excitons can be photoexcited with circularly polarized light, making these materials promising in opto-spintronics. Recently, we have shown that photoexcitation with excess energy extends spin-lifetimes in (BA)2FAPb2I7 by over 2 orders of magnitude compared to resonant excitation and attributed this to polaron formation. Here, we study spin-lifetimes in L-MHPs with different A-site cations: (Hexa)2MAPb2I7, (Hexa)2FAPb2I7, (Hexa)2CsPb2I7 (Hexa: hexylammonium, MA: methylammonium, FA: formamidinium, Cs: cesium). We find that all studied materials exhibit vastly extended spin-lifetimes under excess-energy excitation, but that the polaron formation barrier is reduced with increasing polarity of the A-site cations. First-principles calculations show that (Hexa)2MAPb2I7 has the most stable polarons and (Hexa)2CsPb2I7, the least. Our findings demonstrate tuning of optically controlled exciton spin-lifetimes in L-MHPs through composition engineering, providing a pathway toward optimized materials for spintronics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Energy Letters
ACS Energy Letters Energy-Renewable Energy, Sustainability and the Environment
CiteScore
31.20
自引率
5.00%
发文量
469
审稿时长
1 months
期刊介绍: ACS Energy Letters is a monthly journal that publishes papers reporting new scientific advances in energy research. The journal focuses on topics that are of interest to scientists working in the fundamental and applied sciences. Rapid publication is a central criterion for acceptance, and the journal is known for its quick publication times, with an average of 4-6 weeks from submission to web publication in As Soon As Publishable format. ACS Energy Letters is ranked as the number one journal in the Web of Science Electrochemistry category. It also ranks within the top 10 journals for Physical Chemistry, Energy & Fuels, and Nanoscience & Nanotechnology. The journal offers several types of articles, including Letters, Energy Express, Perspectives, Reviews, Editorials, Viewpoints and Energy Focus. Additionally, authors have the option to submit videos that summarize or support the information presented in a Perspective or Review article, which can be highlighted on the journal's website. ACS Energy Letters is abstracted and indexed in Chemical Abstracts Service/SciFinder, EBSCO-summon, PubMed, Web of Science, Scopus and Portico.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信