基于低插入损耗级联阶梯波导的宽带紧凑型偏振旋转器

IF 0.9 4区 物理与天体物理 Q4 OPTICS
Kelei Miao, Xiaowen Lv
{"title":"基于低插入损耗级联阶梯波导的宽带紧凑型偏振旋转器","authors":"Kelei Miao,&nbsp;Xiaowen Lv","doi":"10.1007/s10043-025-00993-w","DOIUrl":null,"url":null,"abstract":"<div><p>Given that silicon-on-insulator (SOI) has a high refractive index contrast and intrinsic birefringence, photonics devices based on SOI are typically polarization-sensitive. To address this issue, a novel broadband mid-infrared polarization rotator (PR) based on cascaded stepped waveguides was put forward. It can achieve polarization conversion between the fundamental <b><i>TM</i></b><sub>0</sub> and <b><i>TE</i></b><sub>0</sub> modes through mode hybridization formed in asymmetric waveguides. The finite-difference time-domain (FDTD) method was employed to explore its polarization rotation characteristics and optimize the device structure. Simulation results demonstrate that at the central wavelength of 2.53 µm, the maximum polarization extinction ratio (PER) can attain 40.02 dB, the polarization conversion efficiency (PCE) exceeds 99.8%, and the insertion loss (IL) is as low as 0.12 dB. Moreover, the operating bandwidth is expanded to 490 nm (spanning from 2.28 to 2.77 µm). Meanwhile, the device length is merely 16.4 μm. Furthermore, tolerance analysis indicates that the device has good manufacturing tolerance. Owing to its high PER, large bandwidth, and small footprint, the proposed PR has significant application potential in mid-infrared photonic integrated circuits (PICs).</p></div>","PeriodicalId":722,"journal":{"name":"Optical Review","volume":"32 4","pages":"592 - 607"},"PeriodicalIF":0.9000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Broadband and compact polarization rotator based on cascaded-stair waveguide with low insertion loss\",\"authors\":\"Kelei Miao,&nbsp;Xiaowen Lv\",\"doi\":\"10.1007/s10043-025-00993-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Given that silicon-on-insulator (SOI) has a high refractive index contrast and intrinsic birefringence, photonics devices based on SOI are typically polarization-sensitive. To address this issue, a novel broadband mid-infrared polarization rotator (PR) based on cascaded stepped waveguides was put forward. It can achieve polarization conversion between the fundamental <b><i>TM</i></b><sub>0</sub> and <b><i>TE</i></b><sub>0</sub> modes through mode hybridization formed in asymmetric waveguides. The finite-difference time-domain (FDTD) method was employed to explore its polarization rotation characteristics and optimize the device structure. Simulation results demonstrate that at the central wavelength of 2.53 µm, the maximum polarization extinction ratio (PER) can attain 40.02 dB, the polarization conversion efficiency (PCE) exceeds 99.8%, and the insertion loss (IL) is as low as 0.12 dB. Moreover, the operating bandwidth is expanded to 490 nm (spanning from 2.28 to 2.77 µm). Meanwhile, the device length is merely 16.4 μm. Furthermore, tolerance analysis indicates that the device has good manufacturing tolerance. Owing to its high PER, large bandwidth, and small footprint, the proposed PR has significant application potential in mid-infrared photonic integrated circuits (PICs).</p></div>\",\"PeriodicalId\":722,\"journal\":{\"name\":\"Optical Review\",\"volume\":\"32 4\",\"pages\":\"592 - 607\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optical Review\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10043-025-00993-w\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Review","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10043-025-00993-w","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

鉴于绝缘体上硅(SOI)具有高折射率对比度和固有双折射,基于SOI的光子器件通常具有偏振敏感性。针对这一问题,提出了一种基于级联阶跃波导的宽带中红外偏振旋转器。它可以通过在非对称波导中形成的模式杂化实现基模TM0和基模TE0之间的偏振转换。采用时域有限差分(FDTD)方法对其偏振旋转特性进行了研究,并对器件结构进行了优化。仿真结果表明,在中心波长为2.53µm时,最大偏振消光比(PER)可达40.02 dB,偏振转换效率(PCE)超过99.8%,插入损耗(IL)低至0.12 dB。此外,工作带宽扩展到490 nm(从2.28到2.77µm)。器件长度仅为16.4 μm。此外,公差分析表明,该装置具有良好的制造公差。由于其高PER、大带宽和小占地,在中红外光子集成电路(PICs)中具有重要的应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Broadband and compact polarization rotator based on cascaded-stair waveguide with low insertion loss

Given that silicon-on-insulator (SOI) has a high refractive index contrast and intrinsic birefringence, photonics devices based on SOI are typically polarization-sensitive. To address this issue, a novel broadband mid-infrared polarization rotator (PR) based on cascaded stepped waveguides was put forward. It can achieve polarization conversion between the fundamental TM0 and TE0 modes through mode hybridization formed in asymmetric waveguides. The finite-difference time-domain (FDTD) method was employed to explore its polarization rotation characteristics and optimize the device structure. Simulation results demonstrate that at the central wavelength of 2.53 µm, the maximum polarization extinction ratio (PER) can attain 40.02 dB, the polarization conversion efficiency (PCE) exceeds 99.8%, and the insertion loss (IL) is as low as 0.12 dB. Moreover, the operating bandwidth is expanded to 490 nm (spanning from 2.28 to 2.77 µm). Meanwhile, the device length is merely 16.4 μm. Furthermore, tolerance analysis indicates that the device has good manufacturing tolerance. Owing to its high PER, large bandwidth, and small footprint, the proposed PR has significant application potential in mid-infrared photonic integrated circuits (PICs).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Optical Review
Optical Review 物理-光学
CiteScore
2.30
自引率
0.00%
发文量
62
审稿时长
2 months
期刊介绍: Optical Review is an international journal published by the Optical Society of Japan. The scope of the journal is: General and physical optics; Quantum optics and spectroscopy; Information optics; Photonics and optoelectronics; Biomedical photonics and biological optics; Lasers; Nonlinear optics; Optical systems and technologies; Optical materials and manufacturing technologies; Vision; Infrared and short wavelength optics; Cross-disciplinary areas such as environmental, energy, food, agriculture and space technologies; Other optical methods and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信