{"title":"电荷耦合延迟线读出光子计数探测器的设计与性能","authors":"Yalong Zhang, Yongan Liu, Xianghui Yang, Zhe Liu, Lizhi Sheng, Yue Li","doi":"10.1007/s10043-025-00982-z","DOIUrl":null,"url":null,"abstract":"<div><p>Detectors based on cross delay-line (XDL) anodes with charge induction are widely applicable in space astronomical telescopes, deep space exploration, and fluorescence lifetime measurements. In this article, a three-dimensional structure XDL anode based on Printed Circuit Board (PCB) technology is proposed, which can conveniently realize high-resolution detection with a simple process and low cost. We theoretically studied the charge induction principle and established a model of the XDL anode through the finite element method. The model allows us to determine anode parameters, such as anode strip width, inter-strip distance, and substrate thickness, to optimize the output signal on the XDL anode, thereby indirectly affecting the resolution of the detector. Based on the experimental platform, we systematically characterized the key performance parameters of the detector. We conclude that the spatial resolution of the detector is better than 50 <span>\\(\\upmu\\)</span>m and the non-linearity is less than 5<span>\\(\\%\\)</span>. </p></div>","PeriodicalId":722,"journal":{"name":"Optical Review","volume":"32 3","pages":"504 - 511"},"PeriodicalIF":0.9000,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and performance of photon counting detector with charge coupling delay-line readout\",\"authors\":\"Yalong Zhang, Yongan Liu, Xianghui Yang, Zhe Liu, Lizhi Sheng, Yue Li\",\"doi\":\"10.1007/s10043-025-00982-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Detectors based on cross delay-line (XDL) anodes with charge induction are widely applicable in space astronomical telescopes, deep space exploration, and fluorescence lifetime measurements. In this article, a three-dimensional structure XDL anode based on Printed Circuit Board (PCB) technology is proposed, which can conveniently realize high-resolution detection with a simple process and low cost. We theoretically studied the charge induction principle and established a model of the XDL anode through the finite element method. The model allows us to determine anode parameters, such as anode strip width, inter-strip distance, and substrate thickness, to optimize the output signal on the XDL anode, thereby indirectly affecting the resolution of the detector. Based on the experimental platform, we systematically characterized the key performance parameters of the detector. We conclude that the spatial resolution of the detector is better than 50 <span>\\\\(\\\\upmu\\\\)</span>m and the non-linearity is less than 5<span>\\\\(\\\\%\\\\)</span>. </p></div>\",\"PeriodicalId\":722,\"journal\":{\"name\":\"Optical Review\",\"volume\":\"32 3\",\"pages\":\"504 - 511\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optical Review\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10043-025-00982-z\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Review","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10043-025-00982-z","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
Design and performance of photon counting detector with charge coupling delay-line readout
Detectors based on cross delay-line (XDL) anodes with charge induction are widely applicable in space astronomical telescopes, deep space exploration, and fluorescence lifetime measurements. In this article, a three-dimensional structure XDL anode based on Printed Circuit Board (PCB) technology is proposed, which can conveniently realize high-resolution detection with a simple process and low cost. We theoretically studied the charge induction principle and established a model of the XDL anode through the finite element method. The model allows us to determine anode parameters, such as anode strip width, inter-strip distance, and substrate thickness, to optimize the output signal on the XDL anode, thereby indirectly affecting the resolution of the detector. Based on the experimental platform, we systematically characterized the key performance parameters of the detector. We conclude that the spatial resolution of the detector is better than 50 \(\upmu\)m and the non-linearity is less than 5\(\%\).
期刊介绍:
Optical Review is an international journal published by the Optical Society of Japan. The scope of the journal is:
General and physical optics;
Quantum optics and spectroscopy;
Information optics;
Photonics and optoelectronics;
Biomedical photonics and biological optics;
Lasers;
Nonlinear optics;
Optical systems and technologies;
Optical materials and manufacturing technologies;
Vision;
Infrared and short wavelength optics;
Cross-disciplinary areas such as environmental, energy, food, agriculture and space technologies;
Other optical methods and applications.