{"title":"机械化学解开低温二氧化碳甲烷化","authors":"Wanzhen Zheng , Lecheng Lei , Yang Hou","doi":"10.1016/j.matt.2025.102381","DOIUrl":null,"url":null,"abstract":"<div><div>The implementation of CO<sub>2</sub> methanation has long been hindered by a thermodynamic-kinetic trade-off. In a recent issue of <em>Nature Nanotechnology</em>, Guan et al. reported that mechanochemical strain engineering enables dynamic regeneration of active sites, achieving integrated CO<sub>2</sub> capture and methanation at record-low temperatures.</div></div>","PeriodicalId":388,"journal":{"name":"Matter","volume":"8 9","pages":"Article 102381"},"PeriodicalIF":17.5000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanochemistry unlocks low-temperature CO2 methanation\",\"authors\":\"Wanzhen Zheng , Lecheng Lei , Yang Hou\",\"doi\":\"10.1016/j.matt.2025.102381\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The implementation of CO<sub>2</sub> methanation has long been hindered by a thermodynamic-kinetic trade-off. In a recent issue of <em>Nature Nanotechnology</em>, Guan et al. reported that mechanochemical strain engineering enables dynamic regeneration of active sites, achieving integrated CO<sub>2</sub> capture and methanation at record-low temperatures.</div></div>\",\"PeriodicalId\":388,\"journal\":{\"name\":\"Matter\",\"volume\":\"8 9\",\"pages\":\"Article 102381\"},\"PeriodicalIF\":17.5000,\"publicationDate\":\"2025-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Matter\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590238525004242\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590238525004242","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Mechanochemistry unlocks low-temperature CO2 methanation
The implementation of CO2 methanation has long been hindered by a thermodynamic-kinetic trade-off. In a recent issue of Nature Nanotechnology, Guan et al. reported that mechanochemical strain engineering enables dynamic regeneration of active sites, achieving integrated CO2 capture and methanation at record-low temperatures.
期刊介绍:
Matter, a monthly journal affiliated with Cell, spans the broad field of materials science from nano to macro levels,covering fundamentals to applications. Embracing groundbreaking technologies,it includes full-length research articles,reviews, perspectives,previews, opinions, personnel stories, and general editorial content.
Matter aims to be the primary resource for researchers in academia and industry, inspiring the next generation of materials scientists.