界面溶剂化预先组织了析氧反应的过渡态

IF 20.2 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Ricardo Martínez-Hincapié, Janis Timoshenko, Timon Wagner, Eduardo Ortega, Jody Druce, Mariana C. O. Monteiro, Martina Rüscher, Joonbaek Jang, Elif Öykü Alagöz, Samuele Lasagna, Leon Jacobse, Arno Bergmann, Beatriz Roldan Cuenya, Sebastian Z. Oener
{"title":"界面溶剂化预先组织了析氧反应的过渡态","authors":"Ricardo Martínez-Hincapié, Janis Timoshenko, Timon Wagner, Eduardo Ortega, Jody Druce, Mariana C. O. Monteiro, Martina Rüscher, Joonbaek Jang, Elif Öykü Alagöz, Samuele Lasagna, Leon Jacobse, Arno Bergmann, Beatriz Roldan Cuenya, Sebastian Z. Oener","doi":"10.1038/s41557-025-01932-7","DOIUrl":null,"url":null,"abstract":"<p>The sluggish kinetics of the oxygen evolution reaction are an energetic bottleneck for green hydrogen production via water electrolysis. The reaction proceeds over a surface that undergoes (frustrated) phase transitions to accommodate bias-dependent excess charge. Here we perform Arrhenius analysis of common catalysts and correlate the activation energy and pre-exponential factor with the oxide’s structural adaptation via operando X-ray absorption spectroscopy and high-energy X-ray diffraction. We observe that the kinetics switch from a regime that is probably dominated by interfacial solvation to one where the surface energetics take over. This happens right at a transition potential between the α or β phases into the γ-crystal structure of Ni (oxy)hydroxides and when spectroscopic fingerprints of key intermediates emerge. Importantly, this turning potential is independent of the loading or the surface area and informs on the intrinsic catalyst activity. These results suggest that the catalyst activity is intrinsically linked to the initial interfacial solvation (pre-)step.</p><figure></figure>","PeriodicalId":18909,"journal":{"name":"Nature chemistry","volume":"2 1","pages":""},"PeriodicalIF":20.2000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interfacial solvation pre-organizes the transition state of the oxygen evolution reaction\",\"authors\":\"Ricardo Martínez-Hincapié, Janis Timoshenko, Timon Wagner, Eduardo Ortega, Jody Druce, Mariana C. O. Monteiro, Martina Rüscher, Joonbaek Jang, Elif Öykü Alagöz, Samuele Lasagna, Leon Jacobse, Arno Bergmann, Beatriz Roldan Cuenya, Sebastian Z. Oener\",\"doi\":\"10.1038/s41557-025-01932-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The sluggish kinetics of the oxygen evolution reaction are an energetic bottleneck for green hydrogen production via water electrolysis. The reaction proceeds over a surface that undergoes (frustrated) phase transitions to accommodate bias-dependent excess charge. Here we perform Arrhenius analysis of common catalysts and correlate the activation energy and pre-exponential factor with the oxide’s structural adaptation via operando X-ray absorption spectroscopy and high-energy X-ray diffraction. We observe that the kinetics switch from a regime that is probably dominated by interfacial solvation to one where the surface energetics take over. This happens right at a transition potential between the α or β phases into the γ-crystal structure of Ni (oxy)hydroxides and when spectroscopic fingerprints of key intermediates emerge. Importantly, this turning potential is independent of the loading or the surface area and informs on the intrinsic catalyst activity. These results suggest that the catalyst activity is intrinsically linked to the initial interfacial solvation (pre-)step.</p><figure></figure>\",\"PeriodicalId\":18909,\"journal\":{\"name\":\"Nature chemistry\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":20.2000,\"publicationDate\":\"2025-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1038/s41557-025-01932-7\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1038/s41557-025-01932-7","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

析氧反应的缓慢动力学是水电解绿色制氢的能量瓶颈。反应在一个表面上进行,这个表面经历了(受挫的)相变,以适应与偏置相关的多余电荷。本文对常见催化剂进行了阿伦尼乌斯分析,并通过operando x射线吸收光谱和高能x射线衍射将活化能和指前因子与氧化物的结构适应性联系起来。我们观察到动力学从一个可能由界面溶剂化主导的机制转变为一个表面能量取代的机制。这发生在Ni(氧)氢氧化物的α或β相到γ-晶体结构之间的过渡电位和关键中间体的光谱指纹出现时。重要的是,这种转向电位与负载或表面积无关,而与催化剂的内在活性有关。这些结果表明,催化剂活性与初始界面溶剂化(前)步骤有内在联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Interfacial solvation pre-organizes the transition state of the oxygen evolution reaction

Interfacial solvation pre-organizes the transition state of the oxygen evolution reaction

The sluggish kinetics of the oxygen evolution reaction are an energetic bottleneck for green hydrogen production via water electrolysis. The reaction proceeds over a surface that undergoes (frustrated) phase transitions to accommodate bias-dependent excess charge. Here we perform Arrhenius analysis of common catalysts and correlate the activation energy and pre-exponential factor with the oxide’s structural adaptation via operando X-ray absorption spectroscopy and high-energy X-ray diffraction. We observe that the kinetics switch from a regime that is probably dominated by interfacial solvation to one where the surface energetics take over. This happens right at a transition potential between the α or β phases into the γ-crystal structure of Ni (oxy)hydroxides and when spectroscopic fingerprints of key intermediates emerge. Importantly, this turning potential is independent of the loading or the surface area and informs on the intrinsic catalyst activity. These results suggest that the catalyst activity is intrinsically linked to the initial interfacial solvation (pre-)step.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature chemistry
Nature chemistry 化学-化学综合
CiteScore
29.60
自引率
1.40%
发文量
226
审稿时长
1.7 months
期刊介绍: Nature Chemistry is a monthly journal that publishes groundbreaking and significant research in all areas of chemistry. It covers traditional subjects such as analytical, inorganic, organic, and physical chemistry, as well as a wide range of other topics including catalysis, computational and theoretical chemistry, and environmental chemistry. The journal also features interdisciplinary research at the interface of chemistry with biology, materials science, nanotechnology, and physics. Manuscripts detailing such multidisciplinary work are encouraged, as long as the central theme pertains to chemistry. Aside from primary research, Nature Chemistry publishes review articles, news and views, research highlights from other journals, commentaries, book reviews, correspondence, and analysis of the broader chemical landscape. It also addresses crucial issues related to education, funding, policy, intellectual property, and the societal impact of chemistry. Nature Chemistry is dedicated to ensuring the highest standards of original research through a fair and rigorous review process. It offers authors maximum visibility for their papers, access to a broad readership, exceptional copy editing and production standards, rapid publication, and independence from academic societies and other vested interests. Overall, Nature Chemistry aims to be the authoritative voice of the global chemical community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信