Caroline M. Peck, Lauren N. Hart, Roland Kersten, Jenan J. Kharbush
{"title":"氮底物对铜绿微囊藻外代谢组组成的影响","authors":"Caroline M. Peck, Lauren N. Hart, Roland Kersten, Jenan J. Kharbush","doi":"10.1111/1758-2229.70189","DOIUrl":null,"url":null,"abstract":"<p><i>Microcystis aeruginosa</i> is a toxic cyanobacteria species that is often abundant during cyanobacterial harmful algal blooms (cyanoHABs) in freshwaters. This study examined how growth on different nitrogen substrates influences the exometabolome of toxic and non-toxic strains of <i>M. aeruginosa.</i> We used untargeted metabolomics, with liquid chromatography-mass spectrometry of metabolites followed by feature-based molecular networking and in silico metabolite annotation. Molecules released by <i>M. aeruginosa</i> varied based on the type of N substrate provided: the exometabolomes of cultures grown on ammonium and urea were more similar to each other and distinct from those grown on nitrate, suggesting that different assimilatory energetic requirements between reduced and oxidised N substrates are an important driver of exometabolome composition. Amino acids and peptides were the dominant compound class among metabolites that were significantly different between N treatments, but responses to N substrate were also reflected in altered extracellular concentrations of lipids, cyanotoxins, and photoprotectants. These differences in the molecular-level response to the type of N substrate supplied support that environmental factors like changing N availability and oxidative stress may synergistically influence <i>M. aeruginosa</i> strain fitness and community succession, as well as interactions between <i>M. aeruginosa</i> strains and other bacteria or cyanobacteria in the bloom community.</p>","PeriodicalId":163,"journal":{"name":"Environmental Microbiology Reports","volume":"17 5","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://enviromicro-journals.onlinelibrary.wiley.com/doi/epdf/10.1111/1758-2229.70189","citationCount":"0","resultStr":"{\"title\":\"Nitrogen Substrate Impacts Microcystis aeruginosa Exometabolome Composition\",\"authors\":\"Caroline M. Peck, Lauren N. Hart, Roland Kersten, Jenan J. Kharbush\",\"doi\":\"10.1111/1758-2229.70189\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><i>Microcystis aeruginosa</i> is a toxic cyanobacteria species that is often abundant during cyanobacterial harmful algal blooms (cyanoHABs) in freshwaters. This study examined how growth on different nitrogen substrates influences the exometabolome of toxic and non-toxic strains of <i>M. aeruginosa.</i> We used untargeted metabolomics, with liquid chromatography-mass spectrometry of metabolites followed by feature-based molecular networking and in silico metabolite annotation. Molecules released by <i>M. aeruginosa</i> varied based on the type of N substrate provided: the exometabolomes of cultures grown on ammonium and urea were more similar to each other and distinct from those grown on nitrate, suggesting that different assimilatory energetic requirements between reduced and oxidised N substrates are an important driver of exometabolome composition. Amino acids and peptides were the dominant compound class among metabolites that were significantly different between N treatments, but responses to N substrate were also reflected in altered extracellular concentrations of lipids, cyanotoxins, and photoprotectants. These differences in the molecular-level response to the type of N substrate supplied support that environmental factors like changing N availability and oxidative stress may synergistically influence <i>M. aeruginosa</i> strain fitness and community succession, as well as interactions between <i>M. aeruginosa</i> strains and other bacteria or cyanobacteria in the bloom community.</p>\",\"PeriodicalId\":163,\"journal\":{\"name\":\"Environmental Microbiology Reports\",\"volume\":\"17 5\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://enviromicro-journals.onlinelibrary.wiley.com/doi/epdf/10.1111/1758-2229.70189\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Microbiology Reports\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://enviromicro-journals.onlinelibrary.wiley.com/doi/10.1111/1758-2229.70189\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Microbiology Reports","FirstCategoryId":"99","ListUrlMain":"https://enviromicro-journals.onlinelibrary.wiley.com/doi/10.1111/1758-2229.70189","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Microcystis aeruginosa is a toxic cyanobacteria species that is often abundant during cyanobacterial harmful algal blooms (cyanoHABs) in freshwaters. This study examined how growth on different nitrogen substrates influences the exometabolome of toxic and non-toxic strains of M. aeruginosa. We used untargeted metabolomics, with liquid chromatography-mass spectrometry of metabolites followed by feature-based molecular networking and in silico metabolite annotation. Molecules released by M. aeruginosa varied based on the type of N substrate provided: the exometabolomes of cultures grown on ammonium and urea were more similar to each other and distinct from those grown on nitrate, suggesting that different assimilatory energetic requirements between reduced and oxidised N substrates are an important driver of exometabolome composition. Amino acids and peptides were the dominant compound class among metabolites that were significantly different between N treatments, but responses to N substrate were also reflected in altered extracellular concentrations of lipids, cyanotoxins, and photoprotectants. These differences in the molecular-level response to the type of N substrate supplied support that environmental factors like changing N availability and oxidative stress may synergistically influence M. aeruginosa strain fitness and community succession, as well as interactions between M. aeruginosa strains and other bacteria or cyanobacteria in the bloom community.
期刊介绍:
The journal is identical in scope to Environmental Microbiology, shares the same editorial team and submission site, and will apply the same high level acceptance criteria. The two journals will be mutually supportive and evolve side-by-side.
Environmental Microbiology Reports provides a high profile vehicle for publication of the most innovative, original and rigorous research in the field. The scope of the Journal encompasses the diversity of current research on microbial processes in the environment, microbial communities, interactions and evolution and includes, but is not limited to, the following:
the structure, activities and communal behaviour of microbial communities
microbial community genetics and evolutionary processes
microbial symbioses, microbial interactions and interactions with plants, animals and abiotic factors
microbes in the tree of life, microbial diversification and evolution
population biology and clonal structure
microbial metabolic and structural diversity
microbial physiology, growth and survival
microbes and surfaces, adhesion and biofouling
responses to environmental signals and stress factors
modelling and theory development
pollution microbiology
extremophiles and life in extreme and unusual little-explored habitats
element cycles and biogeochemical processes, primary and secondary production
microbes in a changing world, microbially-influenced global changes
evolution and diversity of archaeal and bacterial viruses
new technological developments in microbial ecology and evolution, in particular for the study of activities of microbial communities, non-culturable microorganisms and emerging pathogens.