{"title":"1,2,3-三唑类α-淀粉酶和α-葡萄糖苷酶双酶抑制剂干预2型糖尿病的研究进展","authors":"K. Sruthi, S. L. Manju","doi":"10.1002/ardp.70088","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>A series of fifteen 1,2,3-triazole derivatives <b>6(a–o)</b> were developed and evaluated for their inhibitory effects on carbohydrate-hydrolyzing enzymes implicated in Type 2 diabetes management. The compounds were assessed through in silico studies (including molecular docking and ADME predictions) and in vitro assays such as α-amylase, α-glucosidase, and antioxidant activities. Notably, the compounds <b>6a</b>, <b>6d</b>, <b>6g</b>, <b>6h</b>, <b>6k</b>, <b>6l</b>, and <b>6n</b> exhibited dual inhibition against both enzymes. Among them, compound <b>6a</b> exhibited the most potent α-glucosidase inhibition (IC<sub>50</sub> = 22.15 ± 0.75 µM), comparable to the reference drug acarbose (IC<sub>50</sub> = 21.07 ± 0.05 µM). Meanwhile, compound <b>6h</b> demonstrated strong α-amylase inhibition (IC<sub>50</sub> = 84.46 ± 1.14 µM) compared with standard acarbose (IC<sub>50</sub> = 87.62 ± 0.47 µM). Cytotoxicity studies of the most active compounds <b>6a</b> and <b>6h</b> indicated moderate cytotoxicity, with IC<sub>50</sub> values of 32.87 ± 1.2 µM and 32.42 ± 1.5 µM, respectively, suggesting a reasonable safety margin compatible with continued drug development. The DPPH assay revealed moderate to good activity for all compounds <b>6(a–o)</b>, with IC<sub>50</sub> values ranging from 39.60 ± 0.15 to 99.45 ± 0.12 µM. These findings support the therapeutic potential of these compounds as antidiabetic agents.</p></div>","PeriodicalId":128,"journal":{"name":"Archiv der Pharmazie","volume":"358 9","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of 1,2,3-Triazoles as Dual Enzyme Inhibitors Targeting α-Amylase and α-Glucosidase for Type 2 Diabetes Intervention\",\"authors\":\"K. Sruthi, S. L. Manju\",\"doi\":\"10.1002/ardp.70088\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>A series of fifteen 1,2,3-triazole derivatives <b>6(a–o)</b> were developed and evaluated for their inhibitory effects on carbohydrate-hydrolyzing enzymes implicated in Type 2 diabetes management. The compounds were assessed through in silico studies (including molecular docking and ADME predictions) and in vitro assays such as α-amylase, α-glucosidase, and antioxidant activities. Notably, the compounds <b>6a</b>, <b>6d</b>, <b>6g</b>, <b>6h</b>, <b>6k</b>, <b>6l</b>, and <b>6n</b> exhibited dual inhibition against both enzymes. Among them, compound <b>6a</b> exhibited the most potent α-glucosidase inhibition (IC<sub>50</sub> = 22.15 ± 0.75 µM), comparable to the reference drug acarbose (IC<sub>50</sub> = 21.07 ± 0.05 µM). Meanwhile, compound <b>6h</b> demonstrated strong α-amylase inhibition (IC<sub>50</sub> = 84.46 ± 1.14 µM) compared with standard acarbose (IC<sub>50</sub> = 87.62 ± 0.47 µM). Cytotoxicity studies of the most active compounds <b>6a</b> and <b>6h</b> indicated moderate cytotoxicity, with IC<sub>50</sub> values of 32.87 ± 1.2 µM and 32.42 ± 1.5 µM, respectively, suggesting a reasonable safety margin compatible with continued drug development. The DPPH assay revealed moderate to good activity for all compounds <b>6(a–o)</b>, with IC<sub>50</sub> values ranging from 39.60 ± 0.15 to 99.45 ± 0.12 µM. These findings support the therapeutic potential of these compounds as antidiabetic agents.</p></div>\",\"PeriodicalId\":128,\"journal\":{\"name\":\"Archiv der Pharmazie\",\"volume\":\"358 9\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archiv der Pharmazie\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ardp.70088\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archiv der Pharmazie","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ardp.70088","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Development of 1,2,3-Triazoles as Dual Enzyme Inhibitors Targeting α-Amylase and α-Glucosidase for Type 2 Diabetes Intervention
A series of fifteen 1,2,3-triazole derivatives 6(a–o) were developed and evaluated for their inhibitory effects on carbohydrate-hydrolyzing enzymes implicated in Type 2 diabetes management. The compounds were assessed through in silico studies (including molecular docking and ADME predictions) and in vitro assays such as α-amylase, α-glucosidase, and antioxidant activities. Notably, the compounds 6a, 6d, 6g, 6h, 6k, 6l, and 6n exhibited dual inhibition against both enzymes. Among them, compound 6a exhibited the most potent α-glucosidase inhibition (IC50 = 22.15 ± 0.75 µM), comparable to the reference drug acarbose (IC50 = 21.07 ± 0.05 µM). Meanwhile, compound 6h demonstrated strong α-amylase inhibition (IC50 = 84.46 ± 1.14 µM) compared with standard acarbose (IC50 = 87.62 ± 0.47 µM). Cytotoxicity studies of the most active compounds 6a and 6h indicated moderate cytotoxicity, with IC50 values of 32.87 ± 1.2 µM and 32.42 ± 1.5 µM, respectively, suggesting a reasonable safety margin compatible with continued drug development. The DPPH assay revealed moderate to good activity for all compounds 6(a–o), with IC50 values ranging from 39.60 ± 0.15 to 99.45 ± 0.12 µM. These findings support the therapeutic potential of these compounds as antidiabetic agents.
期刊介绍:
Archiv der Pharmazie - Chemistry in Life Sciences is an international journal devoted to research and development in all fields of pharmaceutical and medicinal chemistry. Emphasis is put on papers combining synthetic organic chemistry, structural biology, molecular modelling, bioorganic chemistry, natural products chemistry, biochemistry or analytical methods with pharmaceutical or medicinal aspects such as biological activity. The focus of this journal is put on original research papers, but other scientifically valuable contributions (e.g. reviews, minireviews, highlights, symposia contributions, discussions, and essays) are also welcome.