基于RGO-TiO2-SWCNT电极的智能农业无源编码RFID传感器标签设计

IF 5.3 2区 化学 Q1 CHEMISTRY, ANALYTICAL
Peng Zhang, Junxian Hong, Fengjuan Miao, Bairui Tao
{"title":"基于RGO-TiO2-SWCNT电极的智能农业无源编码RFID传感器标签设计","authors":"Peng Zhang,&nbsp;Junxian Hong,&nbsp;Fengjuan Miao,&nbsp;Bairui Tao","doi":"10.1007/s00604-025-07440-2","DOIUrl":null,"url":null,"abstract":"<div><p>A passive coding monopod antenna sensor (RFID) tag based on a composite material of titanium dioxide (TiO<sub>2</sub>)/single-walled carbon nanotubes (SWCNT)/reduced graphene oxide (RGO) is studied. This sensor can be used to precisely measure light intensity and carbon dioxide concentration. Under the illumination of light with an intensity ranging from 4 to 18.1 klx, the input echo suffered a loss of − 21.88 dB. The response time of the tag to the light intensity was 9.8 s, and the recovery time was 19.2 s. The label generated a frequency point change of 124 MHZ at a carbon dioxide concentration ranging from 700 to 1900 ppm. The response time to the carbon dioxide concentration was 5.2 s, and the recovery time was 18.4 s. After testing and evaluation, this label has excellent stability, repeatability, and responsiveness under normal conditions.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":705,"journal":{"name":"Microchimica Acta","volume":"192 10","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of passive coding RFID sensor tags for smart agriculture based on RGO-TiO2-SWCNT electrode\",\"authors\":\"Peng Zhang,&nbsp;Junxian Hong,&nbsp;Fengjuan Miao,&nbsp;Bairui Tao\",\"doi\":\"10.1007/s00604-025-07440-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A passive coding monopod antenna sensor (RFID) tag based on a composite material of titanium dioxide (TiO<sub>2</sub>)/single-walled carbon nanotubes (SWCNT)/reduced graphene oxide (RGO) is studied. This sensor can be used to precisely measure light intensity and carbon dioxide concentration. Under the illumination of light with an intensity ranging from 4 to 18.1 klx, the input echo suffered a loss of − 21.88 dB. The response time of the tag to the light intensity was 9.8 s, and the recovery time was 19.2 s. The label generated a frequency point change of 124 MHZ at a carbon dioxide concentration ranging from 700 to 1900 ppm. The response time to the carbon dioxide concentration was 5.2 s, and the recovery time was 18.4 s. After testing and evaluation, this label has excellent stability, repeatability, and responsiveness under normal conditions.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":705,\"journal\":{\"name\":\"Microchimica Acta\",\"volume\":\"192 10\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microchimica Acta\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00604-025-07440-2\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microchimica Acta","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00604-025-07440-2","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

研究了一种基于二氧化钛(TiO2)/单壁碳纳米管(SWCNT)/还原氧化石墨烯(RGO)复合材料的无源编码单足天线传感器(RFID)标签。该传感器可用于精确测量光强和二氧化碳浓度。在强度为4 ~ 18.1 klx的光照下,输入回波损失为- 21.88 dB。标记对光强的响应时间为9.8 s,恢复时间为19.2 s。在二氧化碳浓度从700到1900 ppm范围内,标签产生124 MHZ的频率点变化。对co2浓度的响应时间为5.2 s,恢复时间为18.4 s。经过测试和评估,该标签在正常条件下具有优异的稳定性、可重复性和响应性。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design of passive coding RFID sensor tags for smart agriculture based on RGO-TiO2-SWCNT electrode

A passive coding monopod antenna sensor (RFID) tag based on a composite material of titanium dioxide (TiO2)/single-walled carbon nanotubes (SWCNT)/reduced graphene oxide (RGO) is studied. This sensor can be used to precisely measure light intensity and carbon dioxide concentration. Under the illumination of light with an intensity ranging from 4 to 18.1 klx, the input echo suffered a loss of − 21.88 dB. The response time of the tag to the light intensity was 9.8 s, and the recovery time was 19.2 s. The label generated a frequency point change of 124 MHZ at a carbon dioxide concentration ranging from 700 to 1900 ppm. The response time to the carbon dioxide concentration was 5.2 s, and the recovery time was 18.4 s. After testing and evaluation, this label has excellent stability, repeatability, and responsiveness under normal conditions.

Graphical Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microchimica Acta
Microchimica Acta 化学-分析化学
CiteScore
9.80
自引率
5.30%
发文量
410
审稿时长
2.7 months
期刊介绍: As a peer-reviewed journal for analytical sciences and technologies on the micro- and nanoscale, Microchimica Acta has established itself as a premier forum for truly novel approaches in chemical and biochemical analysis. Coverage includes methods and devices that provide expedient solutions to the most contemporary demands in this area. Examples are point-of-care technologies, wearable (bio)sensors, in-vivo-monitoring, micro/nanomotors and materials based on synthetic biology as well as biomedical imaging and targeting.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信