通过镝取代增强高tc Bi5Ti3FeO15的压电性能:一种性能优越的稀土掺杂方法

IF 2.1 4区 材料科学 Q2 MATERIALS SCIENCE, CERAMICS
Hui-Lin Li, Yi-Nuo Chen, Qian Wang, En-Meng Liang, Yi-Jun Wan, Xin-Yu Yu, Zhi-Qiang Li, Xian Zhao, Chun-Ming Wang
{"title":"通过镝取代增强高tc Bi5Ti3FeO15的压电性能:一种性能优越的稀土掺杂方法","authors":"Hui-Lin Li,&nbsp;Yi-Nuo Chen,&nbsp;Qian Wang,&nbsp;En-Meng Liang,&nbsp;Yi-Jun Wan,&nbsp;Xin-Yu Yu,&nbsp;Zhi-Qiang Li,&nbsp;Xian Zhao,&nbsp;Chun-Ming Wang","doi":"10.1007/s41779-025-01193-0","DOIUrl":null,"url":null,"abstract":"<div><p>The development of iron-containing Aurivillius-phase bismuth layer-structured ferroelectrics (BLSFs) has garnered considerable attention due to their unique multiferroic properties, characterized by the coexistence of ferroelectric and magnetic ordering. Among these materials, bismuth titanate-ferrite (Bi<sub>5</sub>Ti<sub>3</sub>FeO<sub>15</sub>) stands out as a prominent candidate for high-temperature piezoelectric applications, given its elevated Curie temperature (<i>T</i><sub>C</sub>) of 760 °C. Despite its potential, the practical utilization of Bi<sub>5</sub>Ti<sub>3</sub>FeO<sub>15</sub> in high-temperature piezoelectric devices is limited by low resistance at elevated temperatures and poor piezoelectric performance. To address these issues, we explored a composition optimization strategy involving the partial substitution of bismuth ions with rare-earth dysprosium (Dy) ions to enhance piezoelectric performance and direct-current (DC) electrical resistivity of Bi<sub>5</sub>Ti<sub>3</sub>FeO<sub>15</sub>. This substitution aims to mitigate the volatility of bismuth ions and stabilize the (Bi<sub>2</sub>O<sub>2</sub>)<sup>2+</sup> layer, thereby reducing oxygen vacancy concentration. We successfully synthesized Bi<sub>5-<i>x</i></sub>Dy<sub><i>x</i></sub>Ti<sub>3</sub>FeO<sub>15</sub> (BTF-100<i>x</i>Dy) oxide compounds using a solid-state reaction method. Our experimental results demonstrate that dysprosium-substituted Bi<sub>5</sub>Ti<sub>3</sub>FeO<sub>15</sub> exhibits markedly enhanced piezoelectric performance compared to the unmodified Bi<sub>5</sub>Ti<sub>3</sub>FeO<sub>15</sub>. Specifically, the BTF-5Dy composition achieved a significant increase in the piezoelectric constant (<i>d</i><sub>33</sub>) to 23.1 pC/N, which is approximately three times higher than that of the unmodified Bi<sub>5</sub>Ti<sub>3</sub>FeO<sub>15</sub> (7.1 pC/N). The temperature-dependent measurements of DC electrical resistivity revealed that dysprosium substitution substantially improves the material’s electrical resistivity at elevated temperatures. Additionally, BTF-5Dy exhibited a high <i>T</i><sub>C</sub> of 787 °C, a low dielectric loss tan<i>δ</i> (~ 0.38% at 1 MHz), and good thermal stability of electromechanical properties up to 300 °C. These improvements are attributed to lattice distortion and reduced oxygen vacancies. Collectively, these findings suggest that dysprosium-substituted Bi<sub>5</sub>Ti<sub>3</sub>FeO<sub>15</sub> ceramics hold great promise as high-performance materials for high-temperature piezoelectric applications.</p></div>","PeriodicalId":673,"journal":{"name":"Journal of the Australian Ceramic Society","volume":"61 4","pages":"1571 - 1582"},"PeriodicalIF":2.1000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced piezoelectric properties in high-TC Bi5Ti3FeO15 via dysprosium substitution: a rare-earth doping approach for superior performance\",\"authors\":\"Hui-Lin Li,&nbsp;Yi-Nuo Chen,&nbsp;Qian Wang,&nbsp;En-Meng Liang,&nbsp;Yi-Jun Wan,&nbsp;Xin-Yu Yu,&nbsp;Zhi-Qiang Li,&nbsp;Xian Zhao,&nbsp;Chun-Ming Wang\",\"doi\":\"10.1007/s41779-025-01193-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The development of iron-containing Aurivillius-phase bismuth layer-structured ferroelectrics (BLSFs) has garnered considerable attention due to their unique multiferroic properties, characterized by the coexistence of ferroelectric and magnetic ordering. Among these materials, bismuth titanate-ferrite (Bi<sub>5</sub>Ti<sub>3</sub>FeO<sub>15</sub>) stands out as a prominent candidate for high-temperature piezoelectric applications, given its elevated Curie temperature (<i>T</i><sub>C</sub>) of 760 °C. Despite its potential, the practical utilization of Bi<sub>5</sub>Ti<sub>3</sub>FeO<sub>15</sub> in high-temperature piezoelectric devices is limited by low resistance at elevated temperatures and poor piezoelectric performance. To address these issues, we explored a composition optimization strategy involving the partial substitution of bismuth ions with rare-earth dysprosium (Dy) ions to enhance piezoelectric performance and direct-current (DC) electrical resistivity of Bi<sub>5</sub>Ti<sub>3</sub>FeO<sub>15</sub>. This substitution aims to mitigate the volatility of bismuth ions and stabilize the (Bi<sub>2</sub>O<sub>2</sub>)<sup>2+</sup> layer, thereby reducing oxygen vacancy concentration. We successfully synthesized Bi<sub>5-<i>x</i></sub>Dy<sub><i>x</i></sub>Ti<sub>3</sub>FeO<sub>15</sub> (BTF-100<i>x</i>Dy) oxide compounds using a solid-state reaction method. Our experimental results demonstrate that dysprosium-substituted Bi<sub>5</sub>Ti<sub>3</sub>FeO<sub>15</sub> exhibits markedly enhanced piezoelectric performance compared to the unmodified Bi<sub>5</sub>Ti<sub>3</sub>FeO<sub>15</sub>. Specifically, the BTF-5Dy composition achieved a significant increase in the piezoelectric constant (<i>d</i><sub>33</sub>) to 23.1 pC/N, which is approximately three times higher than that of the unmodified Bi<sub>5</sub>Ti<sub>3</sub>FeO<sub>15</sub> (7.1 pC/N). The temperature-dependent measurements of DC electrical resistivity revealed that dysprosium substitution substantially improves the material’s electrical resistivity at elevated temperatures. Additionally, BTF-5Dy exhibited a high <i>T</i><sub>C</sub> of 787 °C, a low dielectric loss tan<i>δ</i> (~ 0.38% at 1 MHz), and good thermal stability of electromechanical properties up to 300 °C. These improvements are attributed to lattice distortion and reduced oxygen vacancies. Collectively, these findings suggest that dysprosium-substituted Bi<sub>5</sub>Ti<sub>3</sub>FeO<sub>15</sub> ceramics hold great promise as high-performance materials for high-temperature piezoelectric applications.</p></div>\",\"PeriodicalId\":673,\"journal\":{\"name\":\"Journal of the Australian Ceramic Society\",\"volume\":\"61 4\",\"pages\":\"1571 - 1582\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Australian Ceramic Society\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s41779-025-01193-0\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Australian Ceramic Society","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s41779-025-01193-0","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

摘要

含铁的aurivillius相铋层结构铁电体(BLSFs)由于具有铁电和磁有序共存的独特多铁性而引起了人们的广泛关注。在这些材料中,钛酸铋铁氧体(Bi5Ti3FeO15)作为高温压电应用的突出候选者,其居里温度(TC)高达760°C。尽管Bi5Ti3FeO15具有很大的潜力,但其在高温压电器件中的实际应用受到高温电阻低和压电性能差的限制。为了解决这些问题,我们探索了一种成分优化策略,包括用稀土镝(Dy)离子部分取代铋离子,以提高Bi5Ti3FeO15的压电性能和直流电阻率。这种取代旨在减轻铋离子的挥发性,稳定(Bi2O2)2+层,从而降低氧空位浓度。采用固相反应方法成功合成了Bi5-xDyxTi3FeO15 (BTF-100xDy)氧化物。我们的实验结果表明,与未改性的Bi5Ti3FeO15相比,镝取代的Bi5Ti3FeO15具有显著增强的压电性能。具体而言,BTF-5Dy组分的压电常数(d33)显著提高至23.1 pC/N,约为未改性Bi5Ti3FeO15 (7.1 pC/N)的3倍。对直流电阻率的温度依赖性测量表明,镝取代大大提高了材料在高温下的电阻率。此外,BTF-5Dy具有787°C的高TC, 1 MHz时的低介电损耗tanδ(~ 0.38%)以及高达300°C的机电性能的良好热稳定性。这些改进是由于晶格畸变和氧空位的减少。总的来说,这些发现表明,镝取代的Bi5Ti3FeO15陶瓷作为高温压电应用的高性能材料具有很大的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhanced piezoelectric properties in high-TC Bi5Ti3FeO15 via dysprosium substitution: a rare-earth doping approach for superior performance

The development of iron-containing Aurivillius-phase bismuth layer-structured ferroelectrics (BLSFs) has garnered considerable attention due to their unique multiferroic properties, characterized by the coexistence of ferroelectric and magnetic ordering. Among these materials, bismuth titanate-ferrite (Bi5Ti3FeO15) stands out as a prominent candidate for high-temperature piezoelectric applications, given its elevated Curie temperature (TC) of 760 °C. Despite its potential, the practical utilization of Bi5Ti3FeO15 in high-temperature piezoelectric devices is limited by low resistance at elevated temperatures and poor piezoelectric performance. To address these issues, we explored a composition optimization strategy involving the partial substitution of bismuth ions with rare-earth dysprosium (Dy) ions to enhance piezoelectric performance and direct-current (DC) electrical resistivity of Bi5Ti3FeO15. This substitution aims to mitigate the volatility of bismuth ions and stabilize the (Bi2O2)2+ layer, thereby reducing oxygen vacancy concentration. We successfully synthesized Bi5-xDyxTi3FeO15 (BTF-100xDy) oxide compounds using a solid-state reaction method. Our experimental results demonstrate that dysprosium-substituted Bi5Ti3FeO15 exhibits markedly enhanced piezoelectric performance compared to the unmodified Bi5Ti3FeO15. Specifically, the BTF-5Dy composition achieved a significant increase in the piezoelectric constant (d33) to 23.1 pC/N, which is approximately three times higher than that of the unmodified Bi5Ti3FeO15 (7.1 pC/N). The temperature-dependent measurements of DC electrical resistivity revealed that dysprosium substitution substantially improves the material’s electrical resistivity at elevated temperatures. Additionally, BTF-5Dy exhibited a high TC of 787 °C, a low dielectric loss tanδ (~ 0.38% at 1 MHz), and good thermal stability of electromechanical properties up to 300 °C. These improvements are attributed to lattice distortion and reduced oxygen vacancies. Collectively, these findings suggest that dysprosium-substituted Bi5Ti3FeO15 ceramics hold great promise as high-performance materials for high-temperature piezoelectric applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of the Australian Ceramic Society
Journal of the Australian Ceramic Society Materials Science-Materials Chemistry
CiteScore
3.70
自引率
5.30%
发文量
123
期刊介绍: Publishes high quality research and technical papers in all areas of ceramic and related materials Spans the broad and growing fields of ceramic technology, material science and bioceramics Chronicles new advances in ceramic materials, manufacturing processes and applications Journal of the Australian Ceramic Society since 1965 Professional language editing service is available through our affiliates Nature Research Editing Service and American Journal Experts at the author''s cost and does not guarantee that the manuscript will be reviewed or accepted
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信