热管理系统协同生产水,发电和作物灌溉

IF 36.3 1区 材料科学 Q1 Engineering
Meng Wang, Zixiang He, Haixing Chang, Yen Wei, Shiyu Zhang, Ke Wang, Peng Xie, Rupeng Wang, Nanqi Ren, Shih-Hsin Ho
{"title":"热管理系统协同生产水,发电和作物灌溉","authors":"Meng Wang,&nbsp;Zixiang He,&nbsp;Haixing Chang,&nbsp;Yen Wei,&nbsp;Shiyu Zhang,&nbsp;Ke Wang,&nbsp;Peng Xie,&nbsp;Rupeng Wang,&nbsp;Nanqi Ren,&nbsp;Shih-Hsin Ho","doi":"10.1007/s40820-025-01876-0","DOIUrl":null,"url":null,"abstract":"<div><p>Sustainable water, energy and food (WEF) supplies are the bedrock upon which human society depends. Solar-driven interfacial evaporation, combined with electricity generation and cultivation, is a promising approach to mitigate the freshwater, energy and food crises. However, the performance of solar-driven systems decreases significantly during operation due to uncontrollable weather. This study proposes an integrated water/electricity cogeneration–cultivation system with superior thermal management. The energy storage evaporator, consisting of energy storage microcapsules/hydrogel composites, is optimally designed for sustainable desalination, achieving an evaporation rate of around 1.91 kg m<sup>−2</sup> h<sup>−1</sup>. In the dark, heat released from the phase-change layer supported an evaporation rate of around 0.54 kg m<sup>−2</sup> h<sup>−1</sup>. Reverse electrodialysis harnessed the salinity-gradient energy enhanced during desalination, enabling the long-running WEC system to achieve a power output of ~0.3 W m<sup>−2</sup>, which was almost three times higher than that of conventional seawater/surface water mixing. Additionally, an integrated crop irrigation platform utilized system drainage for real-time, on-demand wheat cultivation without secondary contaminants, facilitating seamless WEF integration. This work presents a novel approach to all-day solar water production, electricity generation and crop irrigation, offering a solution and blueprint for the sustainable development of WEF.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"18 1","pages":""},"PeriodicalIF":36.3000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40820-025-01876-0.pdf","citationCount":"0","resultStr":"{\"title\":\"System with Thermal Management for Synergistic Water Production, Electricity Generation and Crop Irrigation\",\"authors\":\"Meng Wang,&nbsp;Zixiang He,&nbsp;Haixing Chang,&nbsp;Yen Wei,&nbsp;Shiyu Zhang,&nbsp;Ke Wang,&nbsp;Peng Xie,&nbsp;Rupeng Wang,&nbsp;Nanqi Ren,&nbsp;Shih-Hsin Ho\",\"doi\":\"10.1007/s40820-025-01876-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Sustainable water, energy and food (WEF) supplies are the bedrock upon which human society depends. Solar-driven interfacial evaporation, combined with electricity generation and cultivation, is a promising approach to mitigate the freshwater, energy and food crises. However, the performance of solar-driven systems decreases significantly during operation due to uncontrollable weather. This study proposes an integrated water/electricity cogeneration–cultivation system with superior thermal management. The energy storage evaporator, consisting of energy storage microcapsules/hydrogel composites, is optimally designed for sustainable desalination, achieving an evaporation rate of around 1.91 kg m<sup>−2</sup> h<sup>−1</sup>. In the dark, heat released from the phase-change layer supported an evaporation rate of around 0.54 kg m<sup>−2</sup> h<sup>−1</sup>. Reverse electrodialysis harnessed the salinity-gradient energy enhanced during desalination, enabling the long-running WEC system to achieve a power output of ~0.3 W m<sup>−2</sup>, which was almost three times higher than that of conventional seawater/surface water mixing. Additionally, an integrated crop irrigation platform utilized system drainage for real-time, on-demand wheat cultivation without secondary contaminants, facilitating seamless WEF integration. This work presents a novel approach to all-day solar water production, electricity generation and crop irrigation, offering a solution and blueprint for the sustainable development of WEF.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":714,\"journal\":{\"name\":\"Nano-Micro Letters\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":36.3000,\"publicationDate\":\"2025-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s40820-025-01876-0.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano-Micro Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40820-025-01876-0\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Micro Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40820-025-01876-0","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

可持续的水、能源和食物供应是人类社会赖以生存的基石。太阳能驱动的界面蒸发,结合发电和种植,是缓解淡水、能源和粮食危机的一种有希望的方法。然而,由于不可控的天气,太阳能驱动系统的性能在运行过程中显著下降。本研究提出了一种具有优越热管理的综合水/电热电联产-栽培系统。储能蒸发器由储能微胶囊/水凝胶复合材料组成,经过优化设计,可实现可持续海水淡化,蒸发速率约为1.91 kg m−2 h−1。在黑暗中,相变层释放的热量支持约0.54 kg m−2 h−1的蒸发速率。反电渗析利用海水淡化过程中增强的盐度梯度能量,使长时间运行的WEC系统的输出功率达到~0.3 W m−2,几乎是传统海水/地表水混合的三倍。此外,一个集成的作物灌溉平台利用系统排水进行实时、按需小麦种植,没有二次污染,促进了WEF的无缝集成。本工作提出了一种全天候太阳能制水、发电和作物灌溉的新方法,为世界经济论坛的可持续发展提供了解决方案和蓝图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
System with Thermal Management for Synergistic Water Production, Electricity Generation and Crop Irrigation

Sustainable water, energy and food (WEF) supplies are the bedrock upon which human society depends. Solar-driven interfacial evaporation, combined with electricity generation and cultivation, is a promising approach to mitigate the freshwater, energy and food crises. However, the performance of solar-driven systems decreases significantly during operation due to uncontrollable weather. This study proposes an integrated water/electricity cogeneration–cultivation system with superior thermal management. The energy storage evaporator, consisting of energy storage microcapsules/hydrogel composites, is optimally designed for sustainable desalination, achieving an evaporation rate of around 1.91 kg m−2 h−1. In the dark, heat released from the phase-change layer supported an evaporation rate of around 0.54 kg m−2 h−1. Reverse electrodialysis harnessed the salinity-gradient energy enhanced during desalination, enabling the long-running WEC system to achieve a power output of ~0.3 W m−2, which was almost three times higher than that of conventional seawater/surface water mixing. Additionally, an integrated crop irrigation platform utilized system drainage for real-time, on-demand wheat cultivation without secondary contaminants, facilitating seamless WEF integration. This work presents a novel approach to all-day solar water production, electricity generation and crop irrigation, offering a solution and blueprint for the sustainable development of WEF.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano-Micro Letters
Nano-Micro Letters NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
32.60
自引率
4.90%
发文量
981
审稿时长
1.1 months
期刊介绍: Nano-Micro Letters is a peer-reviewed, international, interdisciplinary, and open-access journal published under the SpringerOpen brand. Nano-Micro Letters focuses on the science, experiments, engineering, technologies, and applications of nano- or microscale structures and systems in various fields such as physics, chemistry, biology, material science, and pharmacy.It also explores the expanding interfaces between these fields. Nano-Micro Letters particularly emphasizes the bottom-up approach in the length scale from nano to micro. This approach is crucial for achieving industrial applications in nanotechnology, as it involves the assembly, modification, and control of nanostructures on a microscale.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信