等离子体驱动分子风钻机械打开和拆卸膜的机理

Ciceron Ayala-Orozco, Vardan Vardanyan, Katherine Lopez-Jaime, Zicheng Wang, Jorge M. Seminario, Anatoly B. Kolomeisky and James M. Tour
{"title":"等离子体驱动分子风钻机械打开和拆卸膜的机理","authors":"Ciceron Ayala-Orozco, Vardan Vardanyan, Katherine Lopez-Jaime, Zicheng Wang, Jorge M. Seminario, Anatoly B. Kolomeisky and James M. Tour","doi":"10.1039/D4MR00083H","DOIUrl":null,"url":null,"abstract":"<p >Plasmon-driven molecular jackhammers (MJHs) are a type of molecular machine that converts photon energy into mechanical energy. Upon insertion into lipid bilayers followed by near-infrared light activation, plasmon-driven MJH mechanically open cellular membranes through a process that is not inhibited by reactive oxygen species (ROS) inhibitors and does not induce thermal heating. The molecular mechanism by which the plasmon-driven MJH open and disassemble cellular membranes has not hitherto been established. Herein, we differentiate the mechanical mechanism in MJHs from the ROS-mediated chemical effects in photodynamic therapy or thermal effects in photothermal therapy. We further present a detailed molecular mechanism for the plasmon-driven MJH disassembly of lipid bilayers. The mechanical studies on plasmon-driven MJH disassembly processes on artificial lipid bilayers were done using ROS-unreactive saturated phytanoyl phospholipids. We were able to capture in real-time the lipid bilayer disassembly by MJHs using fluorescence confocal microscopy on saturated phospholipids in giant unilamellar vesicles.</p>","PeriodicalId":101140,"journal":{"name":"RSC Mechanochemistry","volume":" 5","pages":" 706-722"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/mr/d4mr00083h?page=search","citationCount":"0","resultStr":"{\"title\":\"Mechanism of plasmon-driven molecular jackhammers in mechanical opening and disassembly of membranes†\",\"authors\":\"Ciceron Ayala-Orozco, Vardan Vardanyan, Katherine Lopez-Jaime, Zicheng Wang, Jorge M. Seminario, Anatoly B. Kolomeisky and James M. Tour\",\"doi\":\"10.1039/D4MR00083H\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Plasmon-driven molecular jackhammers (MJHs) are a type of molecular machine that converts photon energy into mechanical energy. Upon insertion into lipid bilayers followed by near-infrared light activation, plasmon-driven MJH mechanically open cellular membranes through a process that is not inhibited by reactive oxygen species (ROS) inhibitors and does not induce thermal heating. The molecular mechanism by which the plasmon-driven MJH open and disassemble cellular membranes has not hitherto been established. Herein, we differentiate the mechanical mechanism in MJHs from the ROS-mediated chemical effects in photodynamic therapy or thermal effects in photothermal therapy. We further present a detailed molecular mechanism for the plasmon-driven MJH disassembly of lipid bilayers. The mechanical studies on plasmon-driven MJH disassembly processes on artificial lipid bilayers were done using ROS-unreactive saturated phytanoyl phospholipids. We were able to capture in real-time the lipid bilayer disassembly by MJHs using fluorescence confocal microscopy on saturated phospholipids in giant unilamellar vesicles.</p>\",\"PeriodicalId\":101140,\"journal\":{\"name\":\"RSC Mechanochemistry\",\"volume\":\" 5\",\"pages\":\" 706-722\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/mr/d4mr00083h?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RSC Mechanochemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/mr/d4mr00083h\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Mechanochemistry","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/mr/d4mr00083h","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

等离子体驱动分子手提钻(MJHs)是一种将光子能量转化为机械能的分子机器。在近红外光激活下插入脂质双层后,等离子体驱动的MJH通过不受活性氧(ROS)抑制剂抑制的过程机械地打开细胞膜,也不会引起热加热。等离子体驱动的MJH打开和拆卸细胞膜的分子机制迄今尚未确定。在此,我们将MJHs的机械机制与光动力疗法中ros介导的化学效应或光热疗法中的热效应区分开来。我们进一步提出了等离子体驱动的MJH分解脂质双层的详细分子机制。采用无ros反应的饱和植烷酰磷脂对等离子体驱动的MJH在人工脂质双层上的分解过程进行了力学研究。利用荧光共聚焦显微镜,我们能够实时捕捉到MJHs对巨大单层囊泡中饱和磷脂的脂质双层分解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Mechanism of plasmon-driven molecular jackhammers in mechanical opening and disassembly of membranes†

Mechanism of plasmon-driven molecular jackhammers in mechanical opening and disassembly of membranes†

Plasmon-driven molecular jackhammers (MJHs) are a type of molecular machine that converts photon energy into mechanical energy. Upon insertion into lipid bilayers followed by near-infrared light activation, plasmon-driven MJH mechanically open cellular membranes through a process that is not inhibited by reactive oxygen species (ROS) inhibitors and does not induce thermal heating. The molecular mechanism by which the plasmon-driven MJH open and disassemble cellular membranes has not hitherto been established. Herein, we differentiate the mechanical mechanism in MJHs from the ROS-mediated chemical effects in photodynamic therapy or thermal effects in photothermal therapy. We further present a detailed molecular mechanism for the plasmon-driven MJH disassembly of lipid bilayers. The mechanical studies on plasmon-driven MJH disassembly processes on artificial lipid bilayers were done using ROS-unreactive saturated phytanoyl phospholipids. We were able to capture in real-time the lipid bilayer disassembly by MJHs using fluorescence confocal microscopy on saturated phospholipids in giant unilamellar vesicles.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信