三维铁磁体π-轨道诱导磁性能的受体-供体分子异质结控制

IF 9.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Servet Ozdemir*, Matthew Rogers, Zabeada Aslam, Mannan Ali, Gilberto Teobaldi, Timothy Moorsom, B. J. Hickey and Oscar Cespedes*, 
{"title":"三维铁磁体π-轨道诱导磁性能的受体-供体分子异质结控制","authors":"Servet Ozdemir*,&nbsp;Matthew Rogers,&nbsp;Zabeada Aslam,&nbsp;Mannan Ali,&nbsp;Gilberto Teobaldi,&nbsp;Timothy Moorsom,&nbsp;B. J. Hickey and Oscar Cespedes*,&nbsp;","doi":"10.1021/acs.nanolett.5c03762","DOIUrl":null,"url":null,"abstract":"<p >Metal–organic molecule interfaces have given rise to a wide range of magnetic phenomena. These effects arise due to spin-polarized charge transfer and enhanced exchange interaction at metallo-molecular hybridization sites, where tunability via electric fields beyond ferroelectric interfaces remains to be demonstrated. Here, we explore manipulating the magnetism of cobalt with the intrinsic electric field generated at C<sub>60</sub>/phthalocyanine heterojunctions, a combination commonly used in organic photovoltaics. The results give evidence for a C<sub>60</sub> layer thickness-dependent control of hybridization effects on cobalt. We find that the heterojunctions may attenuate the hybridization effects, with changes in coercivity and magnetization due to the built-in electric field. An emergent exchange bias is attributed to an enhanced Rashba interaction for thicker C<sub>60</sub> layers. Our study clarifies some of the questions in the field of molecular “spinterface” physics and demonstrates that internal electric field generation is a promising method for manipulation of metallo-molecular interfaces up to room temperature.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"25 35","pages":"13394–13400"},"PeriodicalIF":9.1000,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acs.nanolett.5c03762","citationCount":"0","resultStr":"{\"title\":\"Acceptor–Donor Molecular Heterojunction Control of π-Orbital-Induced Magnetic Properties of a 3d Ferromagnet\",\"authors\":\"Servet Ozdemir*,&nbsp;Matthew Rogers,&nbsp;Zabeada Aslam,&nbsp;Mannan Ali,&nbsp;Gilberto Teobaldi,&nbsp;Timothy Moorsom,&nbsp;B. J. Hickey and Oscar Cespedes*,&nbsp;\",\"doi\":\"10.1021/acs.nanolett.5c03762\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Metal–organic molecule interfaces have given rise to a wide range of magnetic phenomena. These effects arise due to spin-polarized charge transfer and enhanced exchange interaction at metallo-molecular hybridization sites, where tunability via electric fields beyond ferroelectric interfaces remains to be demonstrated. Here, we explore manipulating the magnetism of cobalt with the intrinsic electric field generated at C<sub>60</sub>/phthalocyanine heterojunctions, a combination commonly used in organic photovoltaics. The results give evidence for a C<sub>60</sub> layer thickness-dependent control of hybridization effects on cobalt. We find that the heterojunctions may attenuate the hybridization effects, with changes in coercivity and magnetization due to the built-in electric field. An emergent exchange bias is attributed to an enhanced Rashba interaction for thicker C<sub>60</sub> layers. Our study clarifies some of the questions in the field of molecular “spinterface” physics and demonstrates that internal electric field generation is a promising method for manipulation of metallo-molecular interfaces up to room temperature.</p>\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":\"25 35\",\"pages\":\"13394–13400\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/pdf/10.1021/acs.nanolett.5c03762\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.nanolett.5c03762\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.nanolett.5c03762","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

金属-有机分子界面引起了广泛的磁现象。这些效应是由于金属分子杂交位点的自旋极化电荷转移和增强的交换相互作用引起的,其中通过铁电界面以外的电场的可调节性仍有待证明。在这里,我们探索了在C60/酞菁异质结处产生的本禀电场来操纵钴的磁性,这是有机光伏中常用的一种组合。结果证明了C60层厚度对钴杂化效应的控制。我们发现异质结可以减弱杂化效应,由于内置电场的改变,矫顽力和磁化强度会发生变化。在较厚的C60层中,Rashba相互作用增强,产生了交换偏置。我们的研究澄清了分子“空间界面”物理学领域的一些问题,并证明了内部电场产生是一种很有前途的方法,可以在室温下操纵金属分子界面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Acceptor–Donor Molecular Heterojunction Control of π-Orbital-Induced Magnetic Properties of a 3d Ferromagnet

Metal–organic molecule interfaces have given rise to a wide range of magnetic phenomena. These effects arise due to spin-polarized charge transfer and enhanced exchange interaction at metallo-molecular hybridization sites, where tunability via electric fields beyond ferroelectric interfaces remains to be demonstrated. Here, we explore manipulating the magnetism of cobalt with the intrinsic electric field generated at C60/phthalocyanine heterojunctions, a combination commonly used in organic photovoltaics. The results give evidence for a C60 layer thickness-dependent control of hybridization effects on cobalt. We find that the heterojunctions may attenuate the hybridization effects, with changes in coercivity and magnetization due to the built-in electric field. An emergent exchange bias is attributed to an enhanced Rashba interaction for thicker C60 layers. Our study clarifies some of the questions in the field of molecular “spinterface” physics and demonstrates that internal electric field generation is a promising method for manipulation of metallo-molecular interfaces up to room temperature.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信