F G Menezes, H A Borges, I P R Baranov and S Carneiro
{"title":"有效环量子黑洞的热力学","authors":"F G Menezes, H A Borges, I P R Baranov and S Carneiro","doi":"10.1088/1361-6382/adf936","DOIUrl":null,"url":null,"abstract":"We study the thermodynamics of a non-singular black hole model with effective quantum corrections motivated by Loop Quantum Gravity (LQG). The effective geometry has a transition surface that connects trapped and anti-trapped regions with the same mass. There is a minimum mass for which the horizon temperature and Komar energy are zero, and the black hole stops its Hawking evaporation. For horizons above this limit, we present the grey-body factors, emission spectra, and the mass loss rate, solving a one-dimensional Schrödinger-type equation with an effective short-range potential barrier for massless fields of spins 0, , 1 and 2.","PeriodicalId":10282,"journal":{"name":"Classical and Quantum Gravity","volume":"59 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermodynamics of effective loop quantum black holes\",\"authors\":\"F G Menezes, H A Borges, I P R Baranov and S Carneiro\",\"doi\":\"10.1088/1361-6382/adf936\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the thermodynamics of a non-singular black hole model with effective quantum corrections motivated by Loop Quantum Gravity (LQG). The effective geometry has a transition surface that connects trapped and anti-trapped regions with the same mass. There is a minimum mass for which the horizon temperature and Komar energy are zero, and the black hole stops its Hawking evaporation. For horizons above this limit, we present the grey-body factors, emission spectra, and the mass loss rate, solving a one-dimensional Schrödinger-type equation with an effective short-range potential barrier for massless fields of spins 0, , 1 and 2.\",\"PeriodicalId\":10282,\"journal\":{\"name\":\"Classical and Quantum Gravity\",\"volume\":\"59 1\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Classical and Quantum Gravity\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6382/adf936\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Classical and Quantum Gravity","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6382/adf936","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Thermodynamics of effective loop quantum black holes
We study the thermodynamics of a non-singular black hole model with effective quantum corrections motivated by Loop Quantum Gravity (LQG). The effective geometry has a transition surface that connects trapped and anti-trapped regions with the same mass. There is a minimum mass for which the horizon temperature and Komar energy are zero, and the black hole stops its Hawking evaporation. For horizons above this limit, we present the grey-body factors, emission spectra, and the mass loss rate, solving a one-dimensional Schrödinger-type equation with an effective short-range potential barrier for massless fields of spins 0, , 1 and 2.
期刊介绍:
Classical and Quantum Gravity is an established journal for physicists, mathematicians and cosmologists in the fields of gravitation and the theory of spacetime. The journal is now the acknowledged world leader in classical relativity and all areas of quantum gravity.