了解氧气还原反应的气体扩散电极设置的操作:实验与3D多物理场建模

IF 3.5 4区 化学 Q2 ELECTROCHEMISTRY
Erwan Tardy, Raphaël Riasse, Florent Vandenberghe, Florence Druart, Marian Chatenet, Antoine Bonnefont
{"title":"了解氧气还原反应的气体扩散电极设置的操作:实验与3D多物理场建模","authors":"Erwan Tardy,&nbsp;Raphaël Riasse,&nbsp;Florent Vandenberghe,&nbsp;Florence Druart,&nbsp;Marian Chatenet,&nbsp;Antoine Bonnefont","doi":"10.1002/celc.202500172","DOIUrl":null,"url":null,"abstract":"<p>Proton exchange membrane fuel cells (PEMFC) require highly efficient oxygen reduction reaction (ORR) electrocatalysts. The intrinsic ORR performance of advanced ORR catalysts (measured in rotating disk electrode, RDE) is often not obtained in membrane electrode assembly (MEA), which denotes for RDE inability to forecast intrinsic activity at large current density/low potential, owing to severe mass-transport limitation. The gas diffusion electrode (GDE) is a relevant tool to assess the intrinsic ORR activity of catalysts at high current density/low potential, so it enables to better forecast their performance in PEMFC MEA. Herein, ORR kinetics is studied in a GDE via cyclic voltammetry and electrochemical impedance spectroscopy; the polarization curve is modeled using multiphysics and multicomponent 3D simulations. The model allows to investigate the interplay between the electrochemical kinetics and the mass-transport of reactant and products in the flow channels of the monopolar plate, gas diffusion layer, porous electrode, and solution. The simulations highlight the significant impact of partial water flooding in the catalyst layer—even at a minimal thickness of 0.6 μm—on the shape of the GDE polarization curves and suggest that mass-transport limitation inside the catalyst layer may be limiting in a GDE setup, specifically at high current density.</p>","PeriodicalId":142,"journal":{"name":"ChemElectroChem","volume":"12 17","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://chemistry-europe.onlinelibrary.wiley.com/doi/epdf/10.1002/celc.202500172","citationCount":"0","resultStr":"{\"title\":\"Understanding the Operation of a Gas Diffusion Electrode Setup for the Oxygen Reduction Reaction: Experiment versus 3D Multiphysics Modeling\",\"authors\":\"Erwan Tardy,&nbsp;Raphaël Riasse,&nbsp;Florent Vandenberghe,&nbsp;Florence Druart,&nbsp;Marian Chatenet,&nbsp;Antoine Bonnefont\",\"doi\":\"10.1002/celc.202500172\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Proton exchange membrane fuel cells (PEMFC) require highly efficient oxygen reduction reaction (ORR) electrocatalysts. The intrinsic ORR performance of advanced ORR catalysts (measured in rotating disk electrode, RDE) is often not obtained in membrane electrode assembly (MEA), which denotes for RDE inability to forecast intrinsic activity at large current density/low potential, owing to severe mass-transport limitation. The gas diffusion electrode (GDE) is a relevant tool to assess the intrinsic ORR activity of catalysts at high current density/low potential, so it enables to better forecast their performance in PEMFC MEA. Herein, ORR kinetics is studied in a GDE via cyclic voltammetry and electrochemical impedance spectroscopy; the polarization curve is modeled using multiphysics and multicomponent 3D simulations. The model allows to investigate the interplay between the electrochemical kinetics and the mass-transport of reactant and products in the flow channels of the monopolar plate, gas diffusion layer, porous electrode, and solution. The simulations highlight the significant impact of partial water flooding in the catalyst layer—even at a minimal thickness of 0.6 μm—on the shape of the GDE polarization curves and suggest that mass-transport limitation inside the catalyst layer may be limiting in a GDE setup, specifically at high current density.</p>\",\"PeriodicalId\":142,\"journal\":{\"name\":\"ChemElectroChem\",\"volume\":\"12 17\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://chemistry-europe.onlinelibrary.wiley.com/doi/epdf/10.1002/celc.202500172\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemElectroChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/celc.202500172\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemElectroChem","FirstCategoryId":"92","ListUrlMain":"https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/celc.202500172","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

摘要

质子交换膜燃料电池需要高效的氧还原反应(ORR)电催化剂。先进ORR催化剂的本征ORR性能(在旋转圆盘电极上测量,RDE)通常无法在膜电极组装(MEA)中获得,这表明由于严重的质量输运限制,RDE无法预测大电流密度/低电位下的本征活性。气体扩散电极(GDE)是一种评估催化剂在高电流密度/低电位下的内在ORR活性的相关工具,因此可以更好地预测其在PEMFC MEA中的性能。本文通过循环伏安法和电化学阻抗谱法研究了GDE中ORR的动力学;利用多物理场和多分量的三维仿真对极化曲线进行建模。该模型可以研究电化学动力学与单极板、气体扩散层、多孔电极和溶液流动通道中反应物和生成物的传质之间的相互作用。模拟结果表明,即使在最小厚度为0.6 μm的催化剂层中,部分水淹也会对GDE极化曲线的形状产生显著影响,并表明在GDE设置中,催化剂层内的质量输运限制可能受到限制,特别是在高电流密度下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Understanding the Operation of a Gas Diffusion Electrode Setup for the Oxygen Reduction Reaction: Experiment versus 3D Multiphysics Modeling

Understanding the Operation of a Gas Diffusion Electrode Setup for the Oxygen Reduction Reaction: Experiment versus 3D Multiphysics Modeling

Understanding the Operation of a Gas Diffusion Electrode Setup for the Oxygen Reduction Reaction: Experiment versus 3D Multiphysics Modeling

Understanding the Operation of a Gas Diffusion Electrode Setup for the Oxygen Reduction Reaction: Experiment versus 3D Multiphysics Modeling

Proton exchange membrane fuel cells (PEMFC) require highly efficient oxygen reduction reaction (ORR) electrocatalysts. The intrinsic ORR performance of advanced ORR catalysts (measured in rotating disk electrode, RDE) is often not obtained in membrane electrode assembly (MEA), which denotes for RDE inability to forecast intrinsic activity at large current density/low potential, owing to severe mass-transport limitation. The gas diffusion electrode (GDE) is a relevant tool to assess the intrinsic ORR activity of catalysts at high current density/low potential, so it enables to better forecast their performance in PEMFC MEA. Herein, ORR kinetics is studied in a GDE via cyclic voltammetry and electrochemical impedance spectroscopy; the polarization curve is modeled using multiphysics and multicomponent 3D simulations. The model allows to investigate the interplay between the electrochemical kinetics and the mass-transport of reactant and products in the flow channels of the monopolar plate, gas diffusion layer, porous electrode, and solution. The simulations highlight the significant impact of partial water flooding in the catalyst layer—even at a minimal thickness of 0.6 μm—on the shape of the GDE polarization curves and suggest that mass-transport limitation inside the catalyst layer may be limiting in a GDE setup, specifically at high current density.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ChemElectroChem
ChemElectroChem ELECTROCHEMISTRY-
CiteScore
7.90
自引率
2.50%
发文量
515
审稿时长
1.2 months
期刊介绍: ChemElectroChem is aimed to become a top-ranking electrochemistry journal for primary research papers and critical secondary information from authors across the world. The journal covers the entire scope of pure and applied electrochemistry, the latter encompassing (among others) energy applications, electrochemistry at interfaces (including surfaces), photoelectrochemistry and bioelectrochemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信