Siri Gani, Axel Schönecker, Esmaeil Adabifiroozjaei, Leopoldo Molina-Luna, Elias Vollert, Vittorio Marangon, Dominic Bresser, Anke Weidenkaff, Magdalena Graczyk-Zajac, Ralf Riedel
{"title":"高容量锂离子电池用生物质石墨碳涂层硅为主阳极的设计","authors":"Siri Gani, Axel Schönecker, Esmaeil Adabifiroozjaei, Leopoldo Molina-Luna, Elias Vollert, Vittorio Marangon, Dominic Bresser, Anke Weidenkaff, Magdalena Graczyk-Zajac, Ralf Riedel","doi":"10.1002/celc.202500119","DOIUrl":null,"url":null,"abstract":"<p>Silicon-carbon (Si/C) composites are extensively studied as anode materials for lithium-ion batteries (LIBs), with carbon typically sourced from biomass precursors or petroleum byproducts to produce amorphous and graphitic carbon, respectively. However, the use of iron salt as an “activator” to induce graphitization in combination with silicon remains unexplored. In this study, biomass-derived carbon is graphitized using an Fe salt activator to evaluate its effectiveness as a silicon coating for high-capacity anodes. Structural analysis via X-ray diffraction, Raman spectroscopy, and transmission electron microscopy reveals the formation of graphite, predominantly in the form of carbon nanotubes. Electrochemical performance is assessed in both half-cell and full-cell configurations, demonstrating the presence of “activated” graphite enhances reversible capacity, electronic conductivity, and cycle life. These findings highlight low-temperature Fe-assisted graphitization of biomass-derivedcarbon as a promising approach for developing high-performance LIB anodes.</p>","PeriodicalId":142,"journal":{"name":"ChemElectroChem","volume":"12 17","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://chemistry-europe.onlinelibrary.wiley.com/doi/epdf/10.1002/celc.202500119","citationCount":"0","resultStr":"{\"title\":\"Designing a Silicon-Dominant Anode with Graphitic Carbon Coating from Biomass for High-Capacity Li-Ion Batteries\",\"authors\":\"Siri Gani, Axel Schönecker, Esmaeil Adabifiroozjaei, Leopoldo Molina-Luna, Elias Vollert, Vittorio Marangon, Dominic Bresser, Anke Weidenkaff, Magdalena Graczyk-Zajac, Ralf Riedel\",\"doi\":\"10.1002/celc.202500119\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Silicon-carbon (Si/C) composites are extensively studied as anode materials for lithium-ion batteries (LIBs), with carbon typically sourced from biomass precursors or petroleum byproducts to produce amorphous and graphitic carbon, respectively. However, the use of iron salt as an “activator” to induce graphitization in combination with silicon remains unexplored. In this study, biomass-derived carbon is graphitized using an Fe salt activator to evaluate its effectiveness as a silicon coating for high-capacity anodes. Structural analysis via X-ray diffraction, Raman spectroscopy, and transmission electron microscopy reveals the formation of graphite, predominantly in the form of carbon nanotubes. Electrochemical performance is assessed in both half-cell and full-cell configurations, demonstrating the presence of “activated” graphite enhances reversible capacity, electronic conductivity, and cycle life. These findings highlight low-temperature Fe-assisted graphitization of biomass-derivedcarbon as a promising approach for developing high-performance LIB anodes.</p>\",\"PeriodicalId\":142,\"journal\":{\"name\":\"ChemElectroChem\",\"volume\":\"12 17\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://chemistry-europe.onlinelibrary.wiley.com/doi/epdf/10.1002/celc.202500119\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemElectroChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/celc.202500119\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemElectroChem","FirstCategoryId":"92","ListUrlMain":"https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/celc.202500119","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
Designing a Silicon-Dominant Anode with Graphitic Carbon Coating from Biomass for High-Capacity Li-Ion Batteries
Silicon-carbon (Si/C) composites are extensively studied as anode materials for lithium-ion batteries (LIBs), with carbon typically sourced from biomass precursors or petroleum byproducts to produce amorphous and graphitic carbon, respectively. However, the use of iron salt as an “activator” to induce graphitization in combination with silicon remains unexplored. In this study, biomass-derived carbon is graphitized using an Fe salt activator to evaluate its effectiveness as a silicon coating for high-capacity anodes. Structural analysis via X-ray diffraction, Raman spectroscopy, and transmission electron microscopy reveals the formation of graphite, predominantly in the form of carbon nanotubes. Electrochemical performance is assessed in both half-cell and full-cell configurations, demonstrating the presence of “activated” graphite enhances reversible capacity, electronic conductivity, and cycle life. These findings highlight low-temperature Fe-assisted graphitization of biomass-derivedcarbon as a promising approach for developing high-performance LIB anodes.
期刊介绍:
ChemElectroChem is aimed to become a top-ranking electrochemistry journal for primary research papers and critical secondary information from authors across the world. The journal covers the entire scope of pure and applied electrochemistry, the latter encompassing (among others) energy applications, electrochemistry at interfaces (including surfaces), photoelectrochemistry and bioelectrochemistry.