揭示Fe2O3/ n掺杂还原氧化石墨烯负极对高稳定非对称超级电容器电化学性能的影响

IF 3.5 4区 化学 Q2 ELECTROCHEMISTRY
Adam Moyseowicz, Kamil Walczak, Katarzyna Gajewska, Grażyna Gryglewicz
{"title":"揭示Fe2O3/ n掺杂还原氧化石墨烯负极对高稳定非对称超级电容器电化学性能的影响","authors":"Adam Moyseowicz,&nbsp;Kamil Walczak,&nbsp;Katarzyna Gajewska,&nbsp;Grażyna Gryglewicz","doi":"10.1002/celc.202500168","DOIUrl":null,"url":null,"abstract":"<p>This study presents all-pseudocapacitive asymmetric supercapacitors (ASCs) operating in a neutral aqueous electrolyte. Hydrothermal approach is selected for the synthesis of the active electrode materials for ASC. Fe<sub>2</sub>O<sub>3</sub> and N-doped reduced graphene oxide (N-rGO) composites are used for negative electrode, while MnO<sub>2</sub> and N-rGO composite is used for the positive electrode. The Fe<sub>2</sub>O<sub>3</sub> content in the binary composite influences the porosity, morphology, and surface chemistry of the negative electrode material, which further impacts electrochemical performance and cyclic stability of the assembled ASCs. The studies show that graphene-based composites used as a negative electrode should exhibit appropriate porous structure in order to prevent undesired parasitic side reactions. The fabricated ASCs deliver high energy density up to 25.3 Wh kg<sup>−1</sup> density at a power density of 205 W kg<sup>−1</sup> when operated at 2 V in 1 M Na<sub>2</sub>SO<sub>4</sub>. The most stable configuration maintains almost 94% of the initial capacitance after 10 000 charge–discharge cycles. These components demonstrate the potential to fabricate environment-friendly, efficient, and reliable energy storage devices when combined in the proposed configuration with binary Fe<sub>2</sub>O<sub>3</sub> (FNG) and MnO<sub>2</sub> (MNG) composites and a neutral aqueous electrolyte.</p>","PeriodicalId":142,"journal":{"name":"ChemElectroChem","volume":"12 17","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://chemistry-europe.onlinelibrary.wiley.com/doi/epdf/10.1002/celc.202500168","citationCount":"0","resultStr":"{\"title\":\"Unveiling the Impact of Fe2O3/N-Doped Reduced Graphene Oxide Negative Electrode on the Electrochemical Performance of the Highly Stable Asymmetric Supercapacitors\",\"authors\":\"Adam Moyseowicz,&nbsp;Kamil Walczak,&nbsp;Katarzyna Gajewska,&nbsp;Grażyna Gryglewicz\",\"doi\":\"10.1002/celc.202500168\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study presents all-pseudocapacitive asymmetric supercapacitors (ASCs) operating in a neutral aqueous electrolyte. Hydrothermal approach is selected for the synthesis of the active electrode materials for ASC. Fe<sub>2</sub>O<sub>3</sub> and N-doped reduced graphene oxide (N-rGO) composites are used for negative electrode, while MnO<sub>2</sub> and N-rGO composite is used for the positive electrode. The Fe<sub>2</sub>O<sub>3</sub> content in the binary composite influences the porosity, morphology, and surface chemistry of the negative electrode material, which further impacts electrochemical performance and cyclic stability of the assembled ASCs. The studies show that graphene-based composites used as a negative electrode should exhibit appropriate porous structure in order to prevent undesired parasitic side reactions. The fabricated ASCs deliver high energy density up to 25.3 Wh kg<sup>−1</sup> density at a power density of 205 W kg<sup>−1</sup> when operated at 2 V in 1 M Na<sub>2</sub>SO<sub>4</sub>. The most stable configuration maintains almost 94% of the initial capacitance after 10 000 charge–discharge cycles. These components demonstrate the potential to fabricate environment-friendly, efficient, and reliable energy storage devices when combined in the proposed configuration with binary Fe<sub>2</sub>O<sub>3</sub> (FNG) and MnO<sub>2</sub> (MNG) composites and a neutral aqueous electrolyte.</p>\",\"PeriodicalId\":142,\"journal\":{\"name\":\"ChemElectroChem\",\"volume\":\"12 17\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://chemistry-europe.onlinelibrary.wiley.com/doi/epdf/10.1002/celc.202500168\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemElectroChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/celc.202500168\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemElectroChem","FirstCategoryId":"92","ListUrlMain":"https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/celc.202500168","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

摘要

本研究介绍了在中性水溶液中工作的全假电容非对称超级电容器(ASCs)。采用水热法合成ASC活性电极材料。负极采用Fe2O3和n掺杂还原氧化石墨烯(N-rGO)复合材料,正极采用MnO2和N-rGO复合材料。二元复合材料中Fe2O3的含量会影响负极材料的孔隙率、形貌和表面化学性质,进而影响组装ASCs的电化学性能和循环稳定性。研究表明,石墨烯基复合材料作为负极应具有适当的多孔结构,以防止不良的寄生副反应。在2v电压下,在1m Na2SO4中工作时,ASCs的能量密度高达25.3 Wh kg - 1,功率密度为205 W kg - 1。最稳定的配置在10,000次充放电循环后保持近94%的初始电容。当将这些组件与二元Fe2O3 (FNG)和MnO2 (MNG)复合材料和中性水电解质组合在一起时,这些组件显示出制造环保,高效和可靠的储能设备的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Unveiling the Impact of Fe2O3/N-Doped Reduced Graphene Oxide Negative Electrode on the Electrochemical Performance of the Highly Stable Asymmetric Supercapacitors

Unveiling the Impact of Fe2O3/N-Doped Reduced Graphene Oxide Negative Electrode on the Electrochemical Performance of the Highly Stable Asymmetric Supercapacitors

Unveiling the Impact of Fe2O3/N-Doped Reduced Graphene Oxide Negative Electrode on the Electrochemical Performance of the Highly Stable Asymmetric Supercapacitors

Unveiling the Impact of Fe2O3/N-Doped Reduced Graphene Oxide Negative Electrode on the Electrochemical Performance of the Highly Stable Asymmetric Supercapacitors

This study presents all-pseudocapacitive asymmetric supercapacitors (ASCs) operating in a neutral aqueous electrolyte. Hydrothermal approach is selected for the synthesis of the active electrode materials for ASC. Fe2O3 and N-doped reduced graphene oxide (N-rGO) composites are used for negative electrode, while MnO2 and N-rGO composite is used for the positive electrode. The Fe2O3 content in the binary composite influences the porosity, morphology, and surface chemistry of the negative electrode material, which further impacts electrochemical performance and cyclic stability of the assembled ASCs. The studies show that graphene-based composites used as a negative electrode should exhibit appropriate porous structure in order to prevent undesired parasitic side reactions. The fabricated ASCs deliver high energy density up to 25.3 Wh kg−1 density at a power density of 205 W kg−1 when operated at 2 V in 1 M Na2SO4. The most stable configuration maintains almost 94% of the initial capacitance after 10 000 charge–discharge cycles. These components demonstrate the potential to fabricate environment-friendly, efficient, and reliable energy storage devices when combined in the proposed configuration with binary Fe2O3 (FNG) and MnO2 (MNG) composites and a neutral aqueous electrolyte.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ChemElectroChem
ChemElectroChem ELECTROCHEMISTRY-
CiteScore
7.90
自引率
2.50%
发文量
515
审稿时长
1.2 months
期刊介绍: ChemElectroChem is aimed to become a top-ranking electrochemistry journal for primary research papers and critical secondary information from authors across the world. The journal covers the entire scope of pure and applied electrochemistry, the latter encompassing (among others) energy applications, electrochemistry at interfaces (including surfaces), photoelectrochemistry and bioelectrochemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信