Xiaolin Zeng, Yuni Long, Gang Li, Di Zhang, Yilong Deng, Xin Zhi, Yong Wan, Le Wang, Xiang Li
{"title":"基于单细胞测序的脊髓损伤后尖端细胞对星形胶质细胞和巨噬细胞作用的探索","authors":"Xiaolin Zeng, Yuni Long, Gang Li, Di Zhang, Yilong Deng, Xin Zhi, Yong Wan, Le Wang, Xiang Li","doi":"10.1002/jcp.70088","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Excessive inflammation is a capital cause of scar formation and inflammation microenvironment that result in challenge of axonal regeneration after spinal cord injury (SCI). Macrophages and astrocytes play important roles in the inflammatory response. Tip cells, a critical endothelial sub-population, play pivotal roles in post-injury vascular regeneration. Nevertheless, their characteristics in SCI remain poorly documented. This study based on single cell RNA sequencing (scRNA-seq) and in vitro experiment, investigates the effects of tip cells on astrocytes and macrophages. For astrocytes, tip cells can recruit astrocytes to migrant, contribute to the formation of fence-like structure of astrocytes, finally inhibit the diffusion of inflammation via the Angptl4-Sdc4 ligand-receptor pathway. For macrophages, similarly through the Angptl4-Sdc4 ligand-receptor pathway, tip cells can promote macrophages to polarize more toward the M2 phenotype and inhibit their polarization toward M1 phenotype, thus alleviate the inflammatory response. Tip cells after SCI exhibit conserved ribosomal protein expression, implicating ribosome-dependent signaling in their function. These finding highlight the critical role of tip cells in microenvironment after SCI, offering a potential treatment target for SCI.</p></div>","PeriodicalId":15220,"journal":{"name":"Journal of Cellular Physiology","volume":"240 9","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Single-Cell Sequencing-Based Exploration of the Role of Tip Cells on Astrocytes and Macrophages After Spinal Cord Injury\",\"authors\":\"Xiaolin Zeng, Yuni Long, Gang Li, Di Zhang, Yilong Deng, Xin Zhi, Yong Wan, Le Wang, Xiang Li\",\"doi\":\"10.1002/jcp.70088\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Excessive inflammation is a capital cause of scar formation and inflammation microenvironment that result in challenge of axonal regeneration after spinal cord injury (SCI). Macrophages and astrocytes play important roles in the inflammatory response. Tip cells, a critical endothelial sub-population, play pivotal roles in post-injury vascular regeneration. Nevertheless, their characteristics in SCI remain poorly documented. This study based on single cell RNA sequencing (scRNA-seq) and in vitro experiment, investigates the effects of tip cells on astrocytes and macrophages. For astrocytes, tip cells can recruit astrocytes to migrant, contribute to the formation of fence-like structure of astrocytes, finally inhibit the diffusion of inflammation via the Angptl4-Sdc4 ligand-receptor pathway. For macrophages, similarly through the Angptl4-Sdc4 ligand-receptor pathway, tip cells can promote macrophages to polarize more toward the M2 phenotype and inhibit their polarization toward M1 phenotype, thus alleviate the inflammatory response. Tip cells after SCI exhibit conserved ribosomal protein expression, implicating ribosome-dependent signaling in their function. These finding highlight the critical role of tip cells in microenvironment after SCI, offering a potential treatment target for SCI.</p></div>\",\"PeriodicalId\":15220,\"journal\":{\"name\":\"Journal of Cellular Physiology\",\"volume\":\"240 9\",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cellular Physiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jcp.70088\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cellular Physiology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcp.70088","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Single-Cell Sequencing-Based Exploration of the Role of Tip Cells on Astrocytes and Macrophages After Spinal Cord Injury
Excessive inflammation is a capital cause of scar formation and inflammation microenvironment that result in challenge of axonal regeneration after spinal cord injury (SCI). Macrophages and astrocytes play important roles in the inflammatory response. Tip cells, a critical endothelial sub-population, play pivotal roles in post-injury vascular regeneration. Nevertheless, their characteristics in SCI remain poorly documented. This study based on single cell RNA sequencing (scRNA-seq) and in vitro experiment, investigates the effects of tip cells on astrocytes and macrophages. For astrocytes, tip cells can recruit astrocytes to migrant, contribute to the formation of fence-like structure of astrocytes, finally inhibit the diffusion of inflammation via the Angptl4-Sdc4 ligand-receptor pathway. For macrophages, similarly through the Angptl4-Sdc4 ligand-receptor pathway, tip cells can promote macrophages to polarize more toward the M2 phenotype and inhibit their polarization toward M1 phenotype, thus alleviate the inflammatory response. Tip cells after SCI exhibit conserved ribosomal protein expression, implicating ribosome-dependent signaling in their function. These finding highlight the critical role of tip cells in microenvironment after SCI, offering a potential treatment target for SCI.
期刊介绍:
The Journal of Cellular Physiology publishes reports of high biological significance in areas of eukaryotic cell biology and physiology, focusing on those articles that adopt a molecular mechanistic approach to investigate cell structure and function. There is appreciation for the application of cellular, biochemical, molecular and in vivo genetic approaches, as well as the power of genomics, proteomics, bioinformatics and systems biology. In particular, the Journal encourages submission of high-interest papers investigating the genetic and epigenetic regulation of proliferation and phenotype as well as cell fate and lineage commitment by growth factors, cytokines and their cognate receptors and signal transduction pathways that influence the expression, integration and activities of these physiological mediators. Similarly, the Journal encourages submission of manuscripts exploring the regulation of growth and differentiation by cell adhesion molecules in addition to the interplay between these processes and those induced by growth factors and cytokines. Studies on the genes and processes that regulate cell cycle progression and phase transition in eukaryotic cells, and the mechanisms that determine whether cells enter quiescence, proliferate or undergo apoptosis are also welcomed. Submission of papers that address contributions of the extracellular matrix to cellular phenotypes and physiological control as well as regulatory mechanisms governing fertilization, embryogenesis, gametogenesis, cell fate, lineage commitment, differentiation, development and dynamic parameters of cell motility are encouraged. Finally, the investigation of stem cells and changes that differentiate cancer cells from normal cells including studies on the properties and functions of oncogenes and tumor suppressor genes will remain as one of the major interests of the Journal.