基于过零的无故障模型架空配电网高阻抗故障定位方法

IF 2.6 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Juan Carlos Huaquisaca Paye, João Paulo Abreu Vieira, André Pinto Leão, Ghendy Cardoso Junior, Adriano Peres de Morais, Patrick Escalante Farias, Mairon Gallas, Marcelo Costa Santos
{"title":"基于过零的无故障模型架空配电网高阻抗故障定位方法","authors":"Juan Carlos Huaquisaca Paye,&nbsp;João Paulo Abreu Vieira,&nbsp;André Pinto Leão,&nbsp;Ghendy Cardoso Junior,&nbsp;Adriano Peres de Morais,&nbsp;Patrick Escalante Farias,&nbsp;Mairon Gallas,&nbsp;Marcelo Costa Santos","doi":"10.1049/gtd2.13353","DOIUrl":null,"url":null,"abstract":"<p>High-impedance faults (HIFs) location is an increasingly relevant reliability issue in the power distribution industry. The development of practical and accurate one-terminal HIF-locating methods is vital for reducing long-duration outage restoration time and cost. However, the dependency on the estimation of both fault model parameters and fault current signal can jeopardize the accuracy and practicality of existing one-terminal HIF-locating methods. This paper proposes a one-terminal fault-model-free iterative method based on zero-crossings for locating HIFs in overhead distriFbution networks. Two insights into voltage signal relationships are provided to eliminate the need for estimating fault model parameters and the fault current signal in the HIF-locating process. The first one is based on zero-crossings of the calculated voltage drop signal for estimating two parameters of the voltage signal on the fault point. The other insight is based on the zero-crossing of the voltage signal on the fault point, in which the two parameters were previously estimated, for calculating the fault distance from the <i>k</i>th node. Simulation results on a modified IEEE 34-node test feeder validate the high accuracy and robustness of the proposed method, considering the effect of several factors on fault distance estimation. In addition, the method convergence performance is assessed.</p>","PeriodicalId":13261,"journal":{"name":"Iet Generation Transmission & Distribution","volume":"19 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/gtd2.13353","citationCount":"0","resultStr":"{\"title\":\"A fault-model-free method based on zero-crossings for locating high-impedance faults in overhead distribution networks\",\"authors\":\"Juan Carlos Huaquisaca Paye,&nbsp;João Paulo Abreu Vieira,&nbsp;André Pinto Leão,&nbsp;Ghendy Cardoso Junior,&nbsp;Adriano Peres de Morais,&nbsp;Patrick Escalante Farias,&nbsp;Mairon Gallas,&nbsp;Marcelo Costa Santos\",\"doi\":\"10.1049/gtd2.13353\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>High-impedance faults (HIFs) location is an increasingly relevant reliability issue in the power distribution industry. The development of practical and accurate one-terminal HIF-locating methods is vital for reducing long-duration outage restoration time and cost. However, the dependency on the estimation of both fault model parameters and fault current signal can jeopardize the accuracy and practicality of existing one-terminal HIF-locating methods. This paper proposes a one-terminal fault-model-free iterative method based on zero-crossings for locating HIFs in overhead distriFbution networks. Two insights into voltage signal relationships are provided to eliminate the need for estimating fault model parameters and the fault current signal in the HIF-locating process. The first one is based on zero-crossings of the calculated voltage drop signal for estimating two parameters of the voltage signal on the fault point. The other insight is based on the zero-crossing of the voltage signal on the fault point, in which the two parameters were previously estimated, for calculating the fault distance from the <i>k</i>th node. Simulation results on a modified IEEE 34-node test feeder validate the high accuracy and robustness of the proposed method, considering the effect of several factors on fault distance estimation. In addition, the method convergence performance is assessed.</p>\",\"PeriodicalId\":13261,\"journal\":{\"name\":\"Iet Generation Transmission & Distribution\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/gtd2.13353\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iet Generation Transmission & Distribution\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/gtd2.13353\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Generation Transmission & Distribution","FirstCategoryId":"5","ListUrlMain":"https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/gtd2.13353","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

在配电行业中,高阻抗故障(hif)定位是一个日益重要的可靠性问题。开发实用、准确的单端hif定位方法对于减少长时间停电恢复时间和成本至关重要。然而,现有的单端高频定位方法过于依赖故障模型参数和故障电流信号的估计,影响了其精度和实用性。提出了一种基于过零的单端无故障迭代方法,用于架空配电网中高频故障的定位。提供了电压信号关系的两个见解,以消除在hif定位过程中估计故障模型参数和故障电流信号的需要。第一种方法是根据计算得到的电压降信号的过零值来估计故障点电压信号的两个参数。另一种洞察力是基于电压信号在故障点上的过零,其中两个参数是先前估计的,用于计算到第k个节点的故障距离。在一个改进的IEEE 34节点测试馈线上的仿真结果验证了该方法的准确性和鲁棒性,该方法考虑了多个因素对故障距离估计的影响。此外,还对该方法的收敛性能进行了评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A fault-model-free method based on zero-crossings for locating high-impedance faults in overhead distribution networks

A fault-model-free method based on zero-crossings for locating high-impedance faults in overhead distribution networks

A fault-model-free method based on zero-crossings for locating high-impedance faults in overhead distribution networks

A fault-model-free method based on zero-crossings for locating high-impedance faults in overhead distribution networks

A fault-model-free method based on zero-crossings for locating high-impedance faults in overhead distribution networks

High-impedance faults (HIFs) location is an increasingly relevant reliability issue in the power distribution industry. The development of practical and accurate one-terminal HIF-locating methods is vital for reducing long-duration outage restoration time and cost. However, the dependency on the estimation of both fault model parameters and fault current signal can jeopardize the accuracy and practicality of existing one-terminal HIF-locating methods. This paper proposes a one-terminal fault-model-free iterative method based on zero-crossings for locating HIFs in overhead distriFbution networks. Two insights into voltage signal relationships are provided to eliminate the need for estimating fault model parameters and the fault current signal in the HIF-locating process. The first one is based on zero-crossings of the calculated voltage drop signal for estimating two parameters of the voltage signal on the fault point. The other insight is based on the zero-crossing of the voltage signal on the fault point, in which the two parameters were previously estimated, for calculating the fault distance from the kth node. Simulation results on a modified IEEE 34-node test feeder validate the high accuracy and robustness of the proposed method, considering the effect of several factors on fault distance estimation. In addition, the method convergence performance is assessed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Iet Generation Transmission & Distribution
Iet Generation Transmission & Distribution 工程技术-工程:电子与电气
CiteScore
6.10
自引率
12.00%
发文量
301
审稿时长
5.4 months
期刊介绍: IET Generation, Transmission & Distribution is intended as a forum for the publication and discussion of current practice and future developments in electric power generation, transmission and distribution. Practical papers in which examples of good present practice can be described and disseminated are particularly sought. Papers of high technical merit relying on mathematical arguments and computation will be considered, but authors are asked to relegate, as far as possible, the details of analysis to an appendix. The scope of IET Generation, Transmission & Distribution includes the following: Design of transmission and distribution systems Operation and control of power generation Power system management, planning and economics Power system operation, protection and control Power system measurement and modelling Computer applications and computational intelligence in power flexible AC or DC transmission systems Special Issues. Current Call for papers: Next Generation of Synchrophasor-based Power System Monitoring, Operation and Control - https://digital-library.theiet.org/files/IET_GTD_CFP_NGSPSMOC.pdf
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信