超声心动图左室舒张功能的深度学习自动评估

IF 1.4 4区 医学 Q3 CARDIAC & CARDIOVASCULAR SYSTEMS
Arnas Karužas, Laurynas Miščikas, Antanas Kiziela, Karolis Šablauskas, Ieva Kažukauskienė, Dovydas Verikas, Karolis Naskauskas, Gintarė Šakalytė, Gediminas Jaruševičius, Jurgita Plisienė, Vaiva Lesauskaitė
{"title":"超声心动图左室舒张功能的深度学习自动评估","authors":"Arnas Karužas,&nbsp;Laurynas Miščikas,&nbsp;Antanas Kiziela,&nbsp;Karolis Šablauskas,&nbsp;Ieva Kažukauskienė,&nbsp;Dovydas Verikas,&nbsp;Karolis Naskauskas,&nbsp;Gintarė Šakalytė,&nbsp;Gediminas Jaruševičius,&nbsp;Jurgita Plisienė,&nbsp;Vaiva Lesauskaitė","doi":"10.1111/echo.70290","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Aims</h3>\n \n <p>This study sought to evaluate the feasibility, accuracy, and diagnostic performance of a fully automated deep learning model for assessing left ventricular diastolic function (LVDF) using 2D transthoracic echocardiography (TTE).</p>\n </section>\n \n <section>\n \n <h3> Methods and Results</h3>\n \n <p>In this prospective observational study, 302 patients underwent 2D TTE for suspected diastolic dysfunction. Diastolic parameters, such as mitral inflow velocities, tissue Doppler indices, left atrial volumes, and tricuspid regurgitation velocity, were automatically analyzed using AI-based software (Ligence Heart) and compared with expert manual measurements. The AI achieved a maximal measurement success rate for spectral and tissue Doppler parameters. Strong correlation was observed for key variables such as E velocity (<i>r</i> = 0.93), A velocity (<i>r</i> = 0.88), E/A ratio (<i>r</i> = 0.94), and LAVi (<i>r</i> = 0.92), while lower agreement was noted for TR velocity. Classification of diastolic dysfunction showed high accuracy in identifying normal and severe grades, with more variability in intermediate categories. No consistent bias or directional error was observed across measured parameters.</p>\n </section>\n \n <section>\n \n <h3> Conclusion</h3>\n \n <p>Automated AI-based evaluation of diastolic function using 2D TTE is feasible and provides accurate, guideline-based measurements with strong correlation to expert interpretation. The software demonstrated promising results in classifying LVDF grades, particularly in distinguishing normal and severe dysfunction. This approach shows potential to enhance diagnostic consistency and efficiency in clinical practice, although further validation is needed.</p>\n </section>\n </div>","PeriodicalId":50558,"journal":{"name":"Echocardiography-A Journal of Cardiovascular Ultrasound and Allied Techniques","volume":"42 9","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Learning-Driven Automated Assessment of Left Ventricular Diastolic Function in Echocardiography\",\"authors\":\"Arnas Karužas,&nbsp;Laurynas Miščikas,&nbsp;Antanas Kiziela,&nbsp;Karolis Šablauskas,&nbsp;Ieva Kažukauskienė,&nbsp;Dovydas Verikas,&nbsp;Karolis Naskauskas,&nbsp;Gintarė Šakalytė,&nbsp;Gediminas Jaruševičius,&nbsp;Jurgita Plisienė,&nbsp;Vaiva Lesauskaitė\",\"doi\":\"10.1111/echo.70290\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Aims</h3>\\n \\n <p>This study sought to evaluate the feasibility, accuracy, and diagnostic performance of a fully automated deep learning model for assessing left ventricular diastolic function (LVDF) using 2D transthoracic echocardiography (TTE).</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods and Results</h3>\\n \\n <p>In this prospective observational study, 302 patients underwent 2D TTE for suspected diastolic dysfunction. Diastolic parameters, such as mitral inflow velocities, tissue Doppler indices, left atrial volumes, and tricuspid regurgitation velocity, were automatically analyzed using AI-based software (Ligence Heart) and compared with expert manual measurements. The AI achieved a maximal measurement success rate for spectral and tissue Doppler parameters. Strong correlation was observed for key variables such as E velocity (<i>r</i> = 0.93), A velocity (<i>r</i> = 0.88), E/A ratio (<i>r</i> = 0.94), and LAVi (<i>r</i> = 0.92), while lower agreement was noted for TR velocity. Classification of diastolic dysfunction showed high accuracy in identifying normal and severe grades, with more variability in intermediate categories. No consistent bias or directional error was observed across measured parameters.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Conclusion</h3>\\n \\n <p>Automated AI-based evaluation of diastolic function using 2D TTE is feasible and provides accurate, guideline-based measurements with strong correlation to expert interpretation. The software demonstrated promising results in classifying LVDF grades, particularly in distinguishing normal and severe dysfunction. This approach shows potential to enhance diagnostic consistency and efficiency in clinical practice, although further validation is needed.</p>\\n </section>\\n </div>\",\"PeriodicalId\":50558,\"journal\":{\"name\":\"Echocardiography-A Journal of Cardiovascular Ultrasound and Allied Techniques\",\"volume\":\"42 9\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Echocardiography-A Journal of Cardiovascular Ultrasound and Allied Techniques\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/echo.70290\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Echocardiography-A Journal of Cardiovascular Ultrasound and Allied Techniques","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/echo.70290","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

目的本研究旨在评估使用二维经胸超声心动图(TTE)评估左室舒张功能(LVDF)的全自动深度学习模型的可行性、准确性和诊断性能。方法和结果在这项前瞻性观察研究中,302例疑似舒张功能不全的患者接受了2D TTE治疗。使用基于人工智能的软件(Ligence Heart)自动分析舒张参数,如二尖瓣流入速度、组织多普勒指数、左心房容积和三尖瓣反流速度,并与专家手动测量结果进行比较。人工智能实现了光谱和组织多普勒参数的最大测量成功率。E速度(r = 0.93)、A速度(r = 0.88)、E/A比(r = 0.94)和LAVi (r = 0.92)等关键变量的相关性较强,而TR速度的相关性较低。舒张功能不全的分类在确定正常和严重级别方面显示出较高的准确性,而在中间类别中有更多的可变性。在测量参数中没有观察到一致的偏差或方向误差。结论基于人工智能的二维TTE舒张功能自动评估是可行的,并且提供了准确的、基于指南的测量结果,与专家解释有很强的相关性。该软件在LVDF分级方面显示出良好的结果,特别是在区分正常和严重功能障碍方面。这种方法在临床实践中显示出提高诊断一致性和效率的潜力,尽管还需要进一步的验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Learning-Driven Automated Assessment of Left Ventricular Diastolic Function in Echocardiography

Aims

This study sought to evaluate the feasibility, accuracy, and diagnostic performance of a fully automated deep learning model for assessing left ventricular diastolic function (LVDF) using 2D transthoracic echocardiography (TTE).

Methods and Results

In this prospective observational study, 302 patients underwent 2D TTE for suspected diastolic dysfunction. Diastolic parameters, such as mitral inflow velocities, tissue Doppler indices, left atrial volumes, and tricuspid regurgitation velocity, were automatically analyzed using AI-based software (Ligence Heart) and compared with expert manual measurements. The AI achieved a maximal measurement success rate for spectral and tissue Doppler parameters. Strong correlation was observed for key variables such as E velocity (r = 0.93), A velocity (r = 0.88), E/A ratio (r = 0.94), and LAVi (r = 0.92), while lower agreement was noted for TR velocity. Classification of diastolic dysfunction showed high accuracy in identifying normal and severe grades, with more variability in intermediate categories. No consistent bias or directional error was observed across measured parameters.

Conclusion

Automated AI-based evaluation of diastolic function using 2D TTE is feasible and provides accurate, guideline-based measurements with strong correlation to expert interpretation. The software demonstrated promising results in classifying LVDF grades, particularly in distinguishing normal and severe dysfunction. This approach shows potential to enhance diagnostic consistency and efficiency in clinical practice, although further validation is needed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.40
自引率
6.70%
发文量
211
审稿时长
3-6 weeks
期刊介绍: Echocardiography: A Journal of Cardiovascular Ultrasound and Allied Techniques is the official publication of the International Society of Cardiovascular Ultrasound. Widely recognized for its comprehensive peer-reviewed articles, case studies, original research, and reviews by international authors. Echocardiography keeps its readership of echocardiographers, ultrasound specialists, and cardiologists well informed of the latest developments in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信