{"title":"关于与圆上随机和弦有关的极值问题","authors":"Cynthia Bortolotto, João P. G. Ramos","doi":"10.1112/mtk.70024","DOIUrl":null,"url":null,"abstract":"<p>Inspired by the work of Karamata, we consider an extremization problem associated with the probability of intersecting two random chords inside a circle of radius <span></span><math></math>, where the endpoints of the chords are drawn according to a given probability distribution on <span></span><math></math>. We show that, for <span></span><math></math>, the problem is degenerated in the sense that any <i>continuous</i> measure is an extremizer, and that, for <span></span><math></math> sufficiently close to 1, the desired maximal value is strictly below the one for <span></span><math></math> by a polynomial factor in <span></span><math></math>. Finally, we prove, by considering the auxiliary problem of drawing a single random chord, that the desired maximum is <span></span><math></math> for <span></span><math></math>. Connections with other variational problems and energy minimization problems are also presented.</p>","PeriodicalId":18463,"journal":{"name":"Mathematika","volume":"71 4","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/mtk.70024","citationCount":"0","resultStr":"{\"title\":\"On extremal problems associated with random chords on a circle\",\"authors\":\"Cynthia Bortolotto, João P. G. Ramos\",\"doi\":\"10.1112/mtk.70024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Inspired by the work of Karamata, we consider an extremization problem associated with the probability of intersecting two random chords inside a circle of radius <span></span><math></math>, where the endpoints of the chords are drawn according to a given probability distribution on <span></span><math></math>. We show that, for <span></span><math></math>, the problem is degenerated in the sense that any <i>continuous</i> measure is an extremizer, and that, for <span></span><math></math> sufficiently close to 1, the desired maximal value is strictly below the one for <span></span><math></math> by a polynomial factor in <span></span><math></math>. Finally, we prove, by considering the auxiliary problem of drawing a single random chord, that the desired maximum is <span></span><math></math> for <span></span><math></math>. Connections with other variational problems and energy minimization problems are also presented.</p>\",\"PeriodicalId\":18463,\"journal\":{\"name\":\"Mathematika\",\"volume\":\"71 4\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/mtk.70024\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematika\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/mtk.70024\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematika","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/mtk.70024","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
On extremal problems associated with random chords on a circle
Inspired by the work of Karamata, we consider an extremization problem associated with the probability of intersecting two random chords inside a circle of radius , where the endpoints of the chords are drawn according to a given probability distribution on . We show that, for , the problem is degenerated in the sense that any continuous measure is an extremizer, and that, for sufficiently close to 1, the desired maximal value is strictly below the one for by a polynomial factor in . Finally, we prove, by considering the auxiliary problem of drawing a single random chord, that the desired maximum is for . Connections with other variational problems and energy minimization problems are also presented.
期刊介绍:
Mathematika publishes both pure and applied mathematical articles and has done so continuously since its founding by Harold Davenport in the 1950s. The traditional emphasis has been towards the purer side of mathematics but applied mathematics and articles addressing both aspects are equally welcome. The journal is published by the London Mathematical Society, on behalf of its owner University College London, and will continue to publish research papers of the highest mathematical quality.