Dongryul M. Kim, Hee Oh
求助PDF
{"title":"Kleinian群的自连接刚性:测度理论准则","authors":"Dongryul M. Kim, Hee Oh","doi":"10.1112/topo.70035","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>,</mo>\n <mi>m</mi>\n <mo>⩾</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$n, m\\geqslant 2$</annotation>\n </semantics></math>. Let <span></span><math>\n <semantics>\n <mrow>\n <mi>Γ</mi>\n <mo><</mo>\n <msup>\n <mtext>SO</mtext>\n <mo>∘</mo>\n </msup>\n <mrow>\n <mo>(</mo>\n <mi>n</mi>\n <mo>+</mo>\n <mn>1</mn>\n <mo>,</mo>\n <mn>1</mn>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\Gamma <\\text{SO}^\\circ (n+1,1)$</annotation>\n </semantics></math> be a Zariski dense convex cocompact subgroup and <span></span><math>\n <semantics>\n <mrow>\n <mi>Λ</mi>\n <mo>⊂</mo>\n <msup>\n <mi>S</mi>\n <mi>n</mi>\n </msup>\n </mrow>\n <annotation>$\\Lambda \\subset \\mathbb {S}^n$</annotation>\n </semantics></math> be its limit set. Let <span></span><math>\n <semantics>\n <mrow>\n <mi>ρ</mi>\n <mo>:</mo>\n <mi>Γ</mi>\n <mo>→</mo>\n <msup>\n <mtext>SO</mtext>\n <mo>∘</mo>\n </msup>\n <mrow>\n <mo>(</mo>\n <mi>m</mi>\n <mo>+</mo>\n <mn>1</mn>\n <mo>,</mo>\n <mn>1</mn>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\rho: \\Gamma \\rightarrow \\text{SO}^\\circ (m+1,1)$</annotation>\n </semantics></math> be a Zariski dense convex cocompact faithful representation and <span></span><math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mo>:</mo>\n <mi>Λ</mi>\n <mo>→</mo>\n <msup>\n <mi>S</mi>\n <mi>m</mi>\n </msup>\n </mrow>\n <annotation>$f:\\Lambda \\rightarrow \\mathbb {S}^{m}$</annotation>\n </semantics></math> the <span></span><math>\n <semantics>\n <mi>ρ</mi>\n <annotation>$\\rho$</annotation>\n </semantics></math>-boundary map. Let\n\n </p>","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":"18 3","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rigidity of Kleinian groups via self-joinings: measure theoretic criterion\",\"authors\":\"Dongryul M. Kim, Hee Oh\",\"doi\":\"10.1112/topo.70035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n <mo>,</mo>\\n <mi>m</mi>\\n <mo>⩾</mo>\\n <mn>2</mn>\\n </mrow>\\n <annotation>$n, m\\\\geqslant 2$</annotation>\\n </semantics></math>. Let <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>Γ</mi>\\n <mo><</mo>\\n <msup>\\n <mtext>SO</mtext>\\n <mo>∘</mo>\\n </msup>\\n <mrow>\\n <mo>(</mo>\\n <mi>n</mi>\\n <mo>+</mo>\\n <mn>1</mn>\\n <mo>,</mo>\\n <mn>1</mn>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\Gamma <\\\\text{SO}^\\\\circ (n+1,1)$</annotation>\\n </semantics></math> be a Zariski dense convex cocompact subgroup and <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>Λ</mi>\\n <mo>⊂</mo>\\n <msup>\\n <mi>S</mi>\\n <mi>n</mi>\\n </msup>\\n </mrow>\\n <annotation>$\\\\Lambda \\\\subset \\\\mathbb {S}^n$</annotation>\\n </semantics></math> be its limit set. Let <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>ρ</mi>\\n <mo>:</mo>\\n <mi>Γ</mi>\\n <mo>→</mo>\\n <msup>\\n <mtext>SO</mtext>\\n <mo>∘</mo>\\n </msup>\\n <mrow>\\n <mo>(</mo>\\n <mi>m</mi>\\n <mo>+</mo>\\n <mn>1</mn>\\n <mo>,</mo>\\n <mn>1</mn>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\rho: \\\\Gamma \\\\rightarrow \\\\text{SO}^\\\\circ (m+1,1)$</annotation>\\n </semantics></math> be a Zariski dense convex cocompact faithful representation and <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>f</mi>\\n <mo>:</mo>\\n <mi>Λ</mi>\\n <mo>→</mo>\\n <msup>\\n <mi>S</mi>\\n <mi>m</mi>\\n </msup>\\n </mrow>\\n <annotation>$f:\\\\Lambda \\\\rightarrow \\\\mathbb {S}^{m}$</annotation>\\n </semantics></math> the <span></span><math>\\n <semantics>\\n <mi>ρ</mi>\\n <annotation>$\\\\rho$</annotation>\\n </semantics></math>-boundary map. Let\\n\\n </p>\",\"PeriodicalId\":56114,\"journal\":{\"name\":\"Journal of Topology\",\"volume\":\"18 3\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Topology\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/topo.70035\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Topology","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/topo.70035","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
引用
批量引用