丙烯酰胺季铵盐光固化抗菌涂料的制备及性能研究

IF 2.8 4区 材料科学 Q2 CHEMISTRY, APPLIED
Qinyi Liu, Yan Xu, Jiaxuan He, Xiaoming Tan, Man Zhang, Tao Fang
{"title":"丙烯酰胺季铵盐光固化抗菌涂料的制备及性能研究","authors":"Qinyi Liu,&nbsp;Yan Xu,&nbsp;Jiaxuan He,&nbsp;Xiaoming Tan,&nbsp;Man Zhang,&nbsp;Tao Fang","doi":"10.1007/s11998-025-01086-8","DOIUrl":null,"url":null,"abstract":"<div><p>The synthesis of dimethylaminopropylmethacrylamide-benzylammonium chloride (QD-BC), a kind of acrylamide quaternary ammonium salt, through the combination of N-dimethylamine propyl methacrylamide and benzyl chloride (BC) is presented in this paper. The structure of QD-BC was analyzed using FTIR, carbon spectrum, mass spectrometry and <sup>1</sup>HNMR spectroscopy. The resulting product was then utilized for the preparation of light-cured antimicrobial coatings. The mechanical properties of the light-cured coatings were evaluated through drawing tests, etc. The antimicrobial efficacy of coatings with varying contents of QD-BC against <i>E. coli</i> and <i>S. aureus</i> was investigated. The results indicate that the coating with the QD-BC content of 7.2% exhibits maximum adhesion strength, reaching 0.87 MPa. Moreover, when the QD-BC content is 6%, the coating displays a hardness value of 5H while maintaining good flexibility throughout all formulations tested. The coating with QD-BC content of 7.5% shows the highest impact strength among all compositions studied. Furthermore, at respective concentrations of 7.5% and 4.2% for the <i>E. coli</i> and <i>S. aureus</i> testing strains, these coatings demonstrate complete antimicrobial activity with exceptional durability.</p></div>","PeriodicalId":619,"journal":{"name":"Journal of Coatings Technology and Research","volume":"22 5","pages":"1871 - 1879"},"PeriodicalIF":2.8000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preparation and performance of light-cured antimicrobial coatings with acrylamide quaternary ammonium salt as antimicrobial agent\",\"authors\":\"Qinyi Liu,&nbsp;Yan Xu,&nbsp;Jiaxuan He,&nbsp;Xiaoming Tan,&nbsp;Man Zhang,&nbsp;Tao Fang\",\"doi\":\"10.1007/s11998-025-01086-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The synthesis of dimethylaminopropylmethacrylamide-benzylammonium chloride (QD-BC), a kind of acrylamide quaternary ammonium salt, through the combination of N-dimethylamine propyl methacrylamide and benzyl chloride (BC) is presented in this paper. The structure of QD-BC was analyzed using FTIR, carbon spectrum, mass spectrometry and <sup>1</sup>HNMR spectroscopy. The resulting product was then utilized for the preparation of light-cured antimicrobial coatings. The mechanical properties of the light-cured coatings were evaluated through drawing tests, etc. The antimicrobial efficacy of coatings with varying contents of QD-BC against <i>E. coli</i> and <i>S. aureus</i> was investigated. The results indicate that the coating with the QD-BC content of 7.2% exhibits maximum adhesion strength, reaching 0.87 MPa. Moreover, when the QD-BC content is 6%, the coating displays a hardness value of 5H while maintaining good flexibility throughout all formulations tested. The coating with QD-BC content of 7.5% shows the highest impact strength among all compositions studied. Furthermore, at respective concentrations of 7.5% and 4.2% for the <i>E. coli</i> and <i>S. aureus</i> testing strains, these coatings demonstrate complete antimicrobial activity with exceptional durability.</p></div>\",\"PeriodicalId\":619,\"journal\":{\"name\":\"Journal of Coatings Technology and Research\",\"volume\":\"22 5\",\"pages\":\"1871 - 1879\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Coatings Technology and Research\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11998-025-01086-8\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Coatings Technology and Research","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11998-025-01086-8","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文以n -二甲胺丙基甲基丙烯酰胺与氯化苄(BC)为原料,合成了丙烯酰胺季铵盐二甲胺丙基甲基丙烯酰胺-苄基氯化铵(QD-BC)。采用FTIR、碳谱、质谱和1HNMR分析了QD-BC的结构。然后利用所得产物制备光固化抗菌涂层。通过拉伸试验等对光固化涂层的力学性能进行了评价。研究了不同含量QD-BC涂层对大肠杆菌和金黄色葡萄球菌的抑菌效果。结果表明:当QD-BC含量为7.2%时,涂层的附着强度最大,达到0.87 MPa;此外,当QD-BC含量为6%时,涂层的硬度值为5H,并且在所有测试配方中都保持良好的柔韧性。QD-BC含量为7.5%的涂层抗冲击强度最高。此外,在大肠杆菌和金黄色葡萄球菌测试菌株的浓度分别为7.5%和4.2%时,这些涂层表现出完全的抗菌活性,具有优异的耐久性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Preparation and performance of light-cured antimicrobial coatings with acrylamide quaternary ammonium salt as antimicrobial agent

The synthesis of dimethylaminopropylmethacrylamide-benzylammonium chloride (QD-BC), a kind of acrylamide quaternary ammonium salt, through the combination of N-dimethylamine propyl methacrylamide and benzyl chloride (BC) is presented in this paper. The structure of QD-BC was analyzed using FTIR, carbon spectrum, mass spectrometry and 1HNMR spectroscopy. The resulting product was then utilized for the preparation of light-cured antimicrobial coatings. The mechanical properties of the light-cured coatings were evaluated through drawing tests, etc. The antimicrobial efficacy of coatings with varying contents of QD-BC against E. coli and S. aureus was investigated. The results indicate that the coating with the QD-BC content of 7.2% exhibits maximum adhesion strength, reaching 0.87 MPa. Moreover, when the QD-BC content is 6%, the coating displays a hardness value of 5H while maintaining good flexibility throughout all formulations tested. The coating with QD-BC content of 7.5% shows the highest impact strength among all compositions studied. Furthermore, at respective concentrations of 7.5% and 4.2% for the E. coli and S. aureus testing strains, these coatings demonstrate complete antimicrobial activity with exceptional durability.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Coatings Technology and Research
Journal of Coatings Technology and Research 工程技术-材料科学:膜
CiteScore
4.30
自引率
8.70%
发文量
130
审稿时长
2.5 months
期刊介绍: Journal of Coatings Technology and Research (JCTR) is a forum for the exchange of research, experience, knowledge and ideas among those with a professional interest in the science, technology and manufacture of functional, protective and decorative coatings including paints, inks and related coatings and their raw materials, and similar topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信