Irfan Ahmad Pindoo, Sanjeet Kumar Sinha, Sweta Chander
{"title":"基于SiGe源的异质结TFET生物传感器的性能分析","authors":"Irfan Ahmad Pindoo, Sanjeet Kumar Sinha, Sweta Chander","doi":"10.1007/s10470-025-02479-w","DOIUrl":null,"url":null,"abstract":"<div><p>This work presents a novel SiGe-source-based heterojunction tunnel field-effect transistor (TFET) biosensor that incorporates a nanogap dielectric cavity beneath the gate and a hetero-dielectric BOX (HDBOX) structure for ultra-sensitive, label-free detection of both neutral and charged biomolecules. The proposed device architecture leverages a low-bandgap SiGe source to enhance band-to-band tunneling (BTBT) efficiency and utilizes dielectric modulation in the nanogap cavity to enable electrostatic coupling with immobilized biomolecules. The sensor exploits distinct detection mechanisms—dielectric constant variation for neutral biomolecules and combined dielectric and charge-field modulation for charged species—thereby achieving a comprehensive detection capability. Extensive TCAD simulations, calibrated against experimental TFET data, were conducted using Kane’s BTBT model, Lombardi mobility, Fermi–Dirac statistics, and SRH recombination, under room temperature conditions. The device demonstrates a high ON/OFF current ratio of 1.947 × 10<sup>8</sup>, a steep subthreshold slope of 28.57 mV/decade, and a maximum current-based sensitivity (SID) of 1.548 × 10<sup>8</sup> for a dielectric modulation range of κ = 1 to 26. Compared to state-of-the-art DM-TFET and PNPN-TFET biosensors, the proposed design exhibits significantly improved sensitivity, lower off-state leakage (~ 10<sup>–14</sup> A), and reduced process complexity. While this study is simulation-based, the device structure employs CMOS-compatible materials and fabrication techniques, paving the way for future experimental validation. These results position the HDBOX TFET biosensor as a promising candidate for real-time, low-power, and label-free biomedical diagnostics.</p></div>","PeriodicalId":7827,"journal":{"name":"Analog Integrated Circuits and Signal Processing","volume":"125 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance analysis of SiGe source based heterojunction TFET biosensor for improved sensitivity\",\"authors\":\"Irfan Ahmad Pindoo, Sanjeet Kumar Sinha, Sweta Chander\",\"doi\":\"10.1007/s10470-025-02479-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This work presents a novel SiGe-source-based heterojunction tunnel field-effect transistor (TFET) biosensor that incorporates a nanogap dielectric cavity beneath the gate and a hetero-dielectric BOX (HDBOX) structure for ultra-sensitive, label-free detection of both neutral and charged biomolecules. The proposed device architecture leverages a low-bandgap SiGe source to enhance band-to-band tunneling (BTBT) efficiency and utilizes dielectric modulation in the nanogap cavity to enable electrostatic coupling with immobilized biomolecules. The sensor exploits distinct detection mechanisms—dielectric constant variation for neutral biomolecules and combined dielectric and charge-field modulation for charged species—thereby achieving a comprehensive detection capability. Extensive TCAD simulations, calibrated against experimental TFET data, were conducted using Kane’s BTBT model, Lombardi mobility, Fermi–Dirac statistics, and SRH recombination, under room temperature conditions. The device demonstrates a high ON/OFF current ratio of 1.947 × 10<sup>8</sup>, a steep subthreshold slope of 28.57 mV/decade, and a maximum current-based sensitivity (SID) of 1.548 × 10<sup>8</sup> for a dielectric modulation range of κ = 1 to 26. Compared to state-of-the-art DM-TFET and PNPN-TFET biosensors, the proposed design exhibits significantly improved sensitivity, lower off-state leakage (~ 10<sup>–14</sup> A), and reduced process complexity. While this study is simulation-based, the device structure employs CMOS-compatible materials and fabrication techniques, paving the way for future experimental validation. These results position the HDBOX TFET biosensor as a promising candidate for real-time, low-power, and label-free biomedical diagnostics.</p></div>\",\"PeriodicalId\":7827,\"journal\":{\"name\":\"Analog Integrated Circuits and Signal Processing\",\"volume\":\"125 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analog Integrated Circuits and Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10470-025-02479-w\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analog Integrated Circuits and Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10470-025-02479-w","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Performance analysis of SiGe source based heterojunction TFET biosensor for improved sensitivity
This work presents a novel SiGe-source-based heterojunction tunnel field-effect transistor (TFET) biosensor that incorporates a nanogap dielectric cavity beneath the gate and a hetero-dielectric BOX (HDBOX) structure for ultra-sensitive, label-free detection of both neutral and charged biomolecules. The proposed device architecture leverages a low-bandgap SiGe source to enhance band-to-band tunneling (BTBT) efficiency and utilizes dielectric modulation in the nanogap cavity to enable electrostatic coupling with immobilized biomolecules. The sensor exploits distinct detection mechanisms—dielectric constant variation for neutral biomolecules and combined dielectric and charge-field modulation for charged species—thereby achieving a comprehensive detection capability. Extensive TCAD simulations, calibrated against experimental TFET data, were conducted using Kane’s BTBT model, Lombardi mobility, Fermi–Dirac statistics, and SRH recombination, under room temperature conditions. The device demonstrates a high ON/OFF current ratio of 1.947 × 108, a steep subthreshold slope of 28.57 mV/decade, and a maximum current-based sensitivity (SID) of 1.548 × 108 for a dielectric modulation range of κ = 1 to 26. Compared to state-of-the-art DM-TFET and PNPN-TFET biosensors, the proposed design exhibits significantly improved sensitivity, lower off-state leakage (~ 10–14 A), and reduced process complexity. While this study is simulation-based, the device structure employs CMOS-compatible materials and fabrication techniques, paving the way for future experimental validation. These results position the HDBOX TFET biosensor as a promising candidate for real-time, low-power, and label-free biomedical diagnostics.
期刊介绍:
Analog Integrated Circuits and Signal Processing is an archival peer reviewed journal dedicated to the design and application of analog, radio frequency (RF), and mixed signal integrated circuits (ICs) as well as signal processing circuits and systems. It features both new research results and tutorial views and reflects the large volume of cutting-edge research activity in the worldwide field today.
A partial list of topics includes analog and mixed signal interface circuits and systems; analog and RFIC design; data converters; active-RC, switched-capacitor, and continuous-time integrated filters; mixed analog/digital VLSI systems; wireless radio transceivers; clock and data recovery circuits; and high speed optoelectronic circuits and systems.