Chunsong Li, Lingxiu Li, Fan Bai, Hui Gao, Yunzhu Liu, Zhongyuan Liu, Shixian Zhang, Yuhui Jin, Wenxi Ji, Longgui Zhang, Yifeng Li, Bo Yu
{"title":"在固体氧化物电解槽与二氧化碳电解集成的析氧过程中,稳定的氧使有效的电化学甲烷耦合成为可能","authors":"Chunsong Li, Lingxiu Li, Fan Bai, Hui Gao, Yunzhu Liu, Zhongyuan Liu, Shixian Zhang, Yuhui Jin, Wenxi Ji, Longgui Zhang, Yifeng Li, Bo Yu","doi":"10.1007/s11708-025-1016-2","DOIUrl":null,"url":null,"abstract":"<div><p>The electrochemical oxidative coupling of methane (EOCM), integrated with CO<sub>2</sub> electrolysis enabled by high-temperature electrolysis technology, represents a promising pathway for methane utilization and carbon neutrality. However, progress in methane activation remains hindered by low C<sub>2</sub> product selectivity and limited reaction activity, primarily due to the lack of efficient and stable catalysts and rational design strategies. A critical focus of current research is the development of catalysts capable of stabilizing reactive oxygen species to facilitate C-H bond activation and subsequent C-C bond formation. Herein, an easily fabricated composite electrode consisting of perovskite La<sub>0.6</sub>Sr<sub>0.4</sub>MnO<sub>3-<i>γ</i></sub> and Ce-Mn-W materials with (Ce<sub>0.90</sub>Gd<sub>0.10</sub>)O<sub>1.95</sub> as the support was developed, demonstrating efficient activate methane activation. Combined theoretical and experimental investigations reveal that the designed composite electrode stabilizes active oxygen species during the oxygen evolution reaction (OER) while exhibiting superior methane adsorption capability. This design, leveraging oxygen species engineering and interfacial synergy, significantly enhances electrochemical methane coupling efficiency, establishing a strategic framework for advancing high-performance catalyst development.</p></div>","PeriodicalId":570,"journal":{"name":"Frontiers in Energy","volume":"19 4","pages":"521 - 533"},"PeriodicalIF":6.2000,"publicationDate":"2025-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient electrochemical methane coupling enabled by stabilized oxygen species during oxygen evolution in a solid oxide electrolyzer integrated with CO2 electrolysis\",\"authors\":\"Chunsong Li, Lingxiu Li, Fan Bai, Hui Gao, Yunzhu Liu, Zhongyuan Liu, Shixian Zhang, Yuhui Jin, Wenxi Ji, Longgui Zhang, Yifeng Li, Bo Yu\",\"doi\":\"10.1007/s11708-025-1016-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The electrochemical oxidative coupling of methane (EOCM), integrated with CO<sub>2</sub> electrolysis enabled by high-temperature electrolysis technology, represents a promising pathway for methane utilization and carbon neutrality. However, progress in methane activation remains hindered by low C<sub>2</sub> product selectivity and limited reaction activity, primarily due to the lack of efficient and stable catalysts and rational design strategies. A critical focus of current research is the development of catalysts capable of stabilizing reactive oxygen species to facilitate C-H bond activation and subsequent C-C bond formation. Herein, an easily fabricated composite electrode consisting of perovskite La<sub>0.6</sub>Sr<sub>0.4</sub>MnO<sub>3-<i>γ</i></sub> and Ce-Mn-W materials with (Ce<sub>0.90</sub>Gd<sub>0.10</sub>)O<sub>1.95</sub> as the support was developed, demonstrating efficient activate methane activation. Combined theoretical and experimental investigations reveal that the designed composite electrode stabilizes active oxygen species during the oxygen evolution reaction (OER) while exhibiting superior methane adsorption capability. This design, leveraging oxygen species engineering and interfacial synergy, significantly enhances electrochemical methane coupling efficiency, establishing a strategic framework for advancing high-performance catalyst development.</p></div>\",\"PeriodicalId\":570,\"journal\":{\"name\":\"Frontiers in Energy\",\"volume\":\"19 4\",\"pages\":\"521 - 533\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11708-025-1016-2\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Energy","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11708-025-1016-2","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Efficient electrochemical methane coupling enabled by stabilized oxygen species during oxygen evolution in a solid oxide electrolyzer integrated with CO2 electrolysis
The electrochemical oxidative coupling of methane (EOCM), integrated with CO2 electrolysis enabled by high-temperature electrolysis technology, represents a promising pathway for methane utilization and carbon neutrality. However, progress in methane activation remains hindered by low C2 product selectivity and limited reaction activity, primarily due to the lack of efficient and stable catalysts and rational design strategies. A critical focus of current research is the development of catalysts capable of stabilizing reactive oxygen species to facilitate C-H bond activation and subsequent C-C bond formation. Herein, an easily fabricated composite electrode consisting of perovskite La0.6Sr0.4MnO3-γ and Ce-Mn-W materials with (Ce0.90Gd0.10)O1.95 as the support was developed, demonstrating efficient activate methane activation. Combined theoretical and experimental investigations reveal that the designed composite electrode stabilizes active oxygen species during the oxygen evolution reaction (OER) while exhibiting superior methane adsorption capability. This design, leveraging oxygen species engineering and interfacial synergy, significantly enhances electrochemical methane coupling efficiency, establishing a strategic framework for advancing high-performance catalyst development.
期刊介绍:
Frontiers in Energy, an interdisciplinary and peer-reviewed international journal launched in January 2007, seeks to provide a rapid and unique platform for reporting the most advanced research on energy technology and strategic thinking in order to promote timely communication between researchers, scientists, engineers, and policy makers in the field of energy.
Frontiers in Energy aims to be a leading peer-reviewed platform and an authoritative source of information for analyses, reviews and evaluations in energy engineering and research, with a strong focus on energy analysis, energy modelling and prediction, integrated energy systems, energy conversion and conservation, energy planning and energy on economic and policy issues.
Frontiers in Energy publishes state-of-the-art review articles, original research papers and short communications by individual researchers or research groups. It is strictly peer-reviewed and accepts only original submissions in English. The scope of the journal is broad and covers all latest focus in current energy research.
High-quality papers are solicited in, but are not limited to the following areas:
-Fundamental energy science
-Energy technology, including energy generation, conversion, storage, renewables, transport, urban design and building efficiency
-Energy and the environment, including pollution control, energy efficiency and climate change
-Energy economics, strategy and policy
-Emerging energy issue