欺骗卷积神经网络的非均匀光照攻击

Akshay Jain;Shiv Ram Dubey;Satish Kumar Singh;KC Santosh;Bidyut Baran Chaudhuri
{"title":"欺骗卷积神经网络的非均匀光照攻击","authors":"Akshay Jain;Shiv Ram Dubey;Satish Kumar Singh;KC Santosh;Bidyut Baran Chaudhuri","doi":"10.1109/TAI.2025.3549396","DOIUrl":null,"url":null,"abstract":"Convolutional neural networks (CNNs) have made remarkable strides; however, they remain susceptible to vulnerabilities, particularly to image perturbations that humans can easily recognize. This weakness, often termed as “attacks,” underscores the limited robustness of CNNs and the need for research into fortifying their resistance against such manipulations. This study introduces a novel nonuniform illumination (NUI) attack technique, where images are subtly altered using varying NUI masks. Extensive experiments are conducted on widely accepted datasets including CIFAR10, TinyImageNet, CalTech256, and NWPU-RESISC45 focusing on image classification with 12 different NUI masks. The resilience of VGG, ResNet, MobilenetV3-small, InceptionV3, and EfficientNet_b0 models against NUI attacks are evaluated. Our results show a substantial decline in the CNN models’ classification accuracy when subjected to NUI attacks, due to changes in the image pixel value distribution, indicating their vulnerability under NUI. To mitigate this, a defense strategy is proposed, including NUI-attacked images, generated through the new NUI transformation, into the training set. The results demonstrate a significant enhancement in CNN model performance when confronted with perturbed images affected by NUI attacks. This strategy seeks to bolster CNN models’ resilience against NUI attacks. A comparative study with other attack techniques shows the effectiveness of the NUI attack and defense technique.<xref><sup>1</sup></xref><fn><p><sup>1</sup>The code is available at <uri>https://github.com/Akshayjain97/Non-Uniform_Illumination</uri></p></fn>","PeriodicalId":73305,"journal":{"name":"IEEE transactions on artificial intelligence","volume":"6 9","pages":"2476-2485"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-uniform Illumination Attack for Fooling Convolutional Neural Networks\",\"authors\":\"Akshay Jain;Shiv Ram Dubey;Satish Kumar Singh;KC Santosh;Bidyut Baran Chaudhuri\",\"doi\":\"10.1109/TAI.2025.3549396\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Convolutional neural networks (CNNs) have made remarkable strides; however, they remain susceptible to vulnerabilities, particularly to image perturbations that humans can easily recognize. This weakness, often termed as “attacks,” underscores the limited robustness of CNNs and the need for research into fortifying their resistance against such manipulations. This study introduces a novel nonuniform illumination (NUI) attack technique, where images are subtly altered using varying NUI masks. Extensive experiments are conducted on widely accepted datasets including CIFAR10, TinyImageNet, CalTech256, and NWPU-RESISC45 focusing on image classification with 12 different NUI masks. The resilience of VGG, ResNet, MobilenetV3-small, InceptionV3, and EfficientNet_b0 models against NUI attacks are evaluated. Our results show a substantial decline in the CNN models’ classification accuracy when subjected to NUI attacks, due to changes in the image pixel value distribution, indicating their vulnerability under NUI. To mitigate this, a defense strategy is proposed, including NUI-attacked images, generated through the new NUI transformation, into the training set. The results demonstrate a significant enhancement in CNN model performance when confronted with perturbed images affected by NUI attacks. This strategy seeks to bolster CNN models’ resilience against NUI attacks. A comparative study with other attack techniques shows the effectiveness of the NUI attack and defense technique.<xref><sup>1</sup></xref><fn><p><sup>1</sup>The code is available at <uri>https://github.com/Akshayjain97/Non-Uniform_Illumination</uri></p></fn>\",\"PeriodicalId\":73305,\"journal\":{\"name\":\"IEEE transactions on artificial intelligence\",\"volume\":\"6 9\",\"pages\":\"2476-2485\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on artificial intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10916770/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on artificial intelligence","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10916770/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

卷积神经网络(cnn)已经取得了显著的进步;然而,它们仍然容易受到脆弱性的影响,特别是人类很容易识别的图像扰动。这个弱点,通常被称为“攻击”,强调了cnn有限的稳健性,以及加强其抵抗此类操纵的研究的必要性。本研究介绍了一种新的非均匀照明(NUI)攻击技术,其中使用不同的NUI掩模巧妙地改变图像。在CIFAR10、TinyImageNet、CalTech256和NWPU-RESISC45等被广泛接受的数据集上进行了大量的实验,重点研究了12种不同NUI掩码的图像分类。评估了VGG、ResNet、MobilenetV3-small、InceptionV3和EfficientNet_b0模型对NUI攻击的弹性。我们的研究结果表明,由于图像像素值分布的变化,CNN模型在受到NUI攻击时的分类精度出现了大幅下降,这说明了CNN模型在NUI攻击下的脆弱性。为了缓解这种情况,提出了一种防御策略,将通过新的NUI变换生成的NUI攻击图像纳入训练集。结果表明,当面对受NUI攻击影响的扰动图像时,CNN模型的性能有显著提高。这一策略旨在增强CNN模型抵御NUI攻击的能力。通过与其他攻击技术的对比研究,证明了NUI攻防技术的有效性。代码可在https://github.com/Akshayjain97/Non-Uniform_Illumination上获得
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-uniform Illumination Attack for Fooling Convolutional Neural Networks
Convolutional neural networks (CNNs) have made remarkable strides; however, they remain susceptible to vulnerabilities, particularly to image perturbations that humans can easily recognize. This weakness, often termed as “attacks,” underscores the limited robustness of CNNs and the need for research into fortifying their resistance against such manipulations. This study introduces a novel nonuniform illumination (NUI) attack technique, where images are subtly altered using varying NUI masks. Extensive experiments are conducted on widely accepted datasets including CIFAR10, TinyImageNet, CalTech256, and NWPU-RESISC45 focusing on image classification with 12 different NUI masks. The resilience of VGG, ResNet, MobilenetV3-small, InceptionV3, and EfficientNet_b0 models against NUI attacks are evaluated. Our results show a substantial decline in the CNN models’ classification accuracy when subjected to NUI attacks, due to changes in the image pixel value distribution, indicating their vulnerability under NUI. To mitigate this, a defense strategy is proposed, including NUI-attacked images, generated through the new NUI transformation, into the training set. The results demonstrate a significant enhancement in CNN model performance when confronted with perturbed images affected by NUI attacks. This strategy seeks to bolster CNN models’ resilience against NUI attacks. A comparative study with other attack techniques shows the effectiveness of the NUI attack and defense technique.1

1The code is available at https://github.com/Akshayjain97/Non-Uniform_Illumination

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信