基于提示的弱监督IFER跨模态特征对齐

IF 3.9 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Hanqin Shi;Xiaofeng Kang;Jiaxiang Wang;Aihua Zheng;Wenjuan Cheng
{"title":"基于提示的弱监督IFER跨模态特征对齐","authors":"Hanqin Shi;Xiaofeng Kang;Jiaxiang Wang;Aihua Zheng;Wenjuan Cheng","doi":"10.1109/LSP.2025.3601513","DOIUrl":null,"url":null,"abstract":"Infrared Facial Expression Recognition (IFER) encounters challenges in data acquisition and annotation under low-light conditions, making fully supervised training difficult. Although pre-trained Vision-Language Models (VLMs) can enhance generalization for downstream tasks, their insufficient attention modeling in cross-domain scenarios leads to ineffective local semantic correlation. To address this, we propose a Prompt-based Cross-modal feature Alignment (PCA) method that improves weakly supervised IFER performance by leveraging RGB facial expression data. The PCA framework comprises two key components: (1) a Cross-modal Prompt Transfer (CPT) strategy that integrates category-specific information to distinguish expressions, and (2) an Image-Guided Alignment (IGA) module that achieves feature alignment using dual-domain feature banks. Experimental results on two benchmark datasets demonstrate that our method significantly outperforms current state-of-the-art approaches, confirming its effectiveness and superiority.","PeriodicalId":13154,"journal":{"name":"IEEE Signal Processing Letters","volume":"32 ","pages":"3410-3414"},"PeriodicalIF":3.9000,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prompt-Based Cross-Modal Feature Alignment for Weakly Supervised IFER\",\"authors\":\"Hanqin Shi;Xiaofeng Kang;Jiaxiang Wang;Aihua Zheng;Wenjuan Cheng\",\"doi\":\"10.1109/LSP.2025.3601513\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Infrared Facial Expression Recognition (IFER) encounters challenges in data acquisition and annotation under low-light conditions, making fully supervised training difficult. Although pre-trained Vision-Language Models (VLMs) can enhance generalization for downstream tasks, their insufficient attention modeling in cross-domain scenarios leads to ineffective local semantic correlation. To address this, we propose a Prompt-based Cross-modal feature Alignment (PCA) method that improves weakly supervised IFER performance by leveraging RGB facial expression data. The PCA framework comprises two key components: (1) a Cross-modal Prompt Transfer (CPT) strategy that integrates category-specific information to distinguish expressions, and (2) an Image-Guided Alignment (IGA) module that achieves feature alignment using dual-domain feature banks. Experimental results on two benchmark datasets demonstrate that our method significantly outperforms current state-of-the-art approaches, confirming its effectiveness and superiority.\",\"PeriodicalId\":13154,\"journal\":{\"name\":\"IEEE Signal Processing Letters\",\"volume\":\"32 \",\"pages\":\"3410-3414\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Signal Processing Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11131686/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Signal Processing Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11131686/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

红外面部表情识别(IFER)在弱光条件下的数据采集和标注面临挑战,使得完全监督训练变得困难。虽然预训练的视觉语言模型(VLMs)可以增强下游任务的泛化能力,但其在跨域场景下的注意力建模不足导致局部语义关联效果不佳。为了解决这个问题,我们提出了一种基于提示的跨模态特征对齐(PCA)方法,该方法通过利用RGB面部表情数据来提高弱监督的IFER性能。主成分分析框架包括两个关键组件:(1)跨模式提示转移(CPT)策略,该策略集成了特定类别的信息来区分表达;(2)图像引导对齐(IGA)模块,该模块使用双域特征库实现特征对齐。在两个基准数据集上的实验结果表明,我们的方法明显优于目前最先进的方法,证实了它的有效性和优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prompt-Based Cross-Modal Feature Alignment for Weakly Supervised IFER
Infrared Facial Expression Recognition (IFER) encounters challenges in data acquisition and annotation under low-light conditions, making fully supervised training difficult. Although pre-trained Vision-Language Models (VLMs) can enhance generalization for downstream tasks, their insufficient attention modeling in cross-domain scenarios leads to ineffective local semantic correlation. To address this, we propose a Prompt-based Cross-modal feature Alignment (PCA) method that improves weakly supervised IFER performance by leveraging RGB facial expression data. The PCA framework comprises two key components: (1) a Cross-modal Prompt Transfer (CPT) strategy that integrates category-specific information to distinguish expressions, and (2) an Image-Guided Alignment (IGA) module that achieves feature alignment using dual-domain feature banks. Experimental results on two benchmark datasets demonstrate that our method significantly outperforms current state-of-the-art approaches, confirming its effectiveness and superiority.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Signal Processing Letters
IEEE Signal Processing Letters 工程技术-工程:电子与电气
CiteScore
7.40
自引率
12.80%
发文量
339
审稿时长
2.8 months
期刊介绍: The IEEE Signal Processing Letters is a monthly, archival publication designed to provide rapid dissemination of original, cutting-edge ideas and timely, significant contributions in signal, image, speech, language and audio processing. Papers published in the Letters can be presented within one year of their appearance in signal processing conferences such as ICASSP, GlobalSIP and ICIP, and also in several workshop organized by the Signal Processing Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信