血管- sam2:在超高分辨率眼底图像中进行无贴片视网膜血管分割

IF 2.2 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Zihuang Wu;Xinyu Xiong
{"title":"血管- sam2:在超高分辨率眼底图像中进行无贴片视网膜血管分割","authors":"Zihuang Wu;Xinyu Xiong","doi":"10.1109/LSENS.2025.3595139","DOIUrl":null,"url":null,"abstract":"Accurate automatic segmentation of blood vessels in ophthalmic images is crucial for the early diagnosis of many diseases. These images are typically high-resolution and contain intricate details of fine terminal vessels. However, most existing deep learning methods operate on lower resolutions, which limits their segmentation accuracy. Learning directly from high-resolution images faces significant challenges, as the computational overhead required by existing complex segmentation decoders can be impractical. To address these challenges, we propose Vessel-SAM2, a retinal vessel segmentation network based on Segment Anything 2 (SAM2), capable of performing end-to-end segmentation at an ultra-high resolution of 2048 × 2048 without the need for cumbersome patching. Vessel-SAM2 fine-tunes the pretrained Hiera of SAM2 using adapters in a parameter-efficient manner, while its decoder incorporates an efficient attention aggregation mechanism. Extensive experiments demonstrate the superior performance of Vessel-SAM2.","PeriodicalId":13014,"journal":{"name":"IEEE Sensors Letters","volume":"9 9","pages":"1-4"},"PeriodicalIF":2.2000,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vessel-SAM2: Adapting Segment Anything 2 for Patch-Free Retinal Vessel Segmentation in Ultra-High Resolution Fundus Images\",\"authors\":\"Zihuang Wu;Xinyu Xiong\",\"doi\":\"10.1109/LSENS.2025.3595139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate automatic segmentation of blood vessels in ophthalmic images is crucial for the early diagnosis of many diseases. These images are typically high-resolution and contain intricate details of fine terminal vessels. However, most existing deep learning methods operate on lower resolutions, which limits their segmentation accuracy. Learning directly from high-resolution images faces significant challenges, as the computational overhead required by existing complex segmentation decoders can be impractical. To address these challenges, we propose Vessel-SAM2, a retinal vessel segmentation network based on Segment Anything 2 (SAM2), capable of performing end-to-end segmentation at an ultra-high resolution of 2048 × 2048 without the need for cumbersome patching. Vessel-SAM2 fine-tunes the pretrained Hiera of SAM2 using adapters in a parameter-efficient manner, while its decoder incorporates an efficient attention aggregation mechanism. Extensive experiments demonstrate the superior performance of Vessel-SAM2.\",\"PeriodicalId\":13014,\"journal\":{\"name\":\"IEEE Sensors Letters\",\"volume\":\"9 9\",\"pages\":\"1-4\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Sensors Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11107345/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11107345/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

眼部图像中血管的准确自动分割对于许多疾病的早期诊断至关重要。这些图像通常是高分辨率的,包含精细末端血管的复杂细节。然而,大多数现有的深度学习方法在较低的分辨率下运行,这限制了它们的分割精度。直接从高分辨率图像中学习面临着重大挑战,因为现有复杂分割解码器所需的计算开销可能不切实际。为了解决这些挑战,我们提出了基于SAM2 (Segment Anything 2)的视网膜血管分割网络vessel -SAM2,能够以2048 × 2048的超高分辨率进行端到端分割,而无需繁琐的修补。Vessel-SAM2使用适配器以参数有效的方式对SAM2的预训练Hiera进行微调,而其解码器则采用有效的注意力聚集机制。大量的实验证明了Vessel-SAM2的优越性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Vessel-SAM2: Adapting Segment Anything 2 for Patch-Free Retinal Vessel Segmentation in Ultra-High Resolution Fundus Images
Accurate automatic segmentation of blood vessels in ophthalmic images is crucial for the early diagnosis of many diseases. These images are typically high-resolution and contain intricate details of fine terminal vessels. However, most existing deep learning methods operate on lower resolutions, which limits their segmentation accuracy. Learning directly from high-resolution images faces significant challenges, as the computational overhead required by existing complex segmentation decoders can be impractical. To address these challenges, we propose Vessel-SAM2, a retinal vessel segmentation network based on Segment Anything 2 (SAM2), capable of performing end-to-end segmentation at an ultra-high resolution of 2048 × 2048 without the need for cumbersome patching. Vessel-SAM2 fine-tunes the pretrained Hiera of SAM2 using adapters in a parameter-efficient manner, while its decoder incorporates an efficient attention aggregation mechanism. Extensive experiments demonstrate the superior performance of Vessel-SAM2.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Sensors Letters
IEEE Sensors Letters Engineering-Electrical and Electronic Engineering
CiteScore
3.50
自引率
7.10%
发文量
194
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信