稠密图中平铺的ramsey型问题

IF 0.9 3区 数学 Q1 MATHEMATICS
József Balogh , Andrea Freschi , Andrew Treglown
{"title":"稠密图中平铺的ramsey型问题","authors":"József Balogh ,&nbsp;Andrea Freschi ,&nbsp;Andrew Treglown","doi":"10.1016/j.ejc.2025.104228","DOIUrl":null,"url":null,"abstract":"<div><div>Given a graph <span><math><mi>H</mi></math></span>, the Ramsey number <span><math><mrow><mi>R</mi><mrow><mo>(</mo><mi>H</mi><mo>)</mo></mrow></mrow></math></span> is the smallest positive integer <span><math><mi>n</mi></math></span> such that every 2-edge-colouring of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> yields a monochromatic copy of <span><math><mi>H</mi></math></span>. We write <span><math><mrow><mi>m</mi><mi>H</mi></mrow></math></span> to denote the union of <span><math><mi>m</mi></math></span> vertex-disjoint copies of <span><math><mi>H</mi></math></span>. The members of the family <span><math><mrow><mo>{</mo><mi>m</mi><mi>H</mi><mo>:</mo><mi>m</mi><mo>≥</mo><mn>1</mn><mo>}</mo></mrow></math></span> are also known as <span><math><mi>H</mi></math></span>-tilings. A well-known result of Burr, Erdős and Spencer states that <span><math><mrow><mi>R</mi><mrow><mo>(</mo><mi>m</mi><msub><mrow><mi>K</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>)</mo></mrow><mo>=</mo><mn>5</mn><mi>m</mi></mrow></math></span> for every <span><math><mrow><mi>m</mi><mo>≥</mo><mn>2</mn></mrow></math></span>. On the other hand, Moon proved that every 2-edge-colouring of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>3</mn><mi>m</mi><mo>+</mo><mn>2</mn></mrow></msub></math></span> yields a <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span>-tiling consisting of <span><math><mi>m</mi></math></span> monochromatic copies of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span>, for every <span><math><mrow><mi>m</mi><mo>≥</mo><mn>2</mn></mrow></math></span>. Crucially, in Moon’s result, distinct copies of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span> might receive different colours.</div><div>In this paper, we investigate the analogous questions where the complete host graph is replaced by a graph of large minimum degree. We determine the (asymptotic) minimum degree threshold for forcing a <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span>-tiling covering a prescribed proportion of the vertices in a <span><math><mn>2</mn></math></span>-edge-coloured graph such that every copy of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span> in the tiling is monochromatic. We also determine the largest size of a monochromatic <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span>-tiling one can guarantee in any 2-edge-coloured graph of large minimum degree. These results therefore provide generalisations of the theorems of Moon and Burr–Erdős–Spencer to the setting of dense graphs.</div><div>It is also natural to consider generalisations of these problems to <span><math><mi>r</mi></math></span>-edge-colourings (for <span><math><mrow><mi>r</mi><mo>≥</mo><mn>2</mn></mrow></math></span>) and for <span><math><mi>H</mi></math></span>-tilings (for arbitrary graphs <span><math><mi>H</mi></math></span>). We prove some results in this direction and propose several open questions.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"131 ","pages":"Article 104228"},"PeriodicalIF":0.9000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ramsey-type problems for tilings in dense graphs\",\"authors\":\"József Balogh ,&nbsp;Andrea Freschi ,&nbsp;Andrew Treglown\",\"doi\":\"10.1016/j.ejc.2025.104228\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Given a graph <span><math><mi>H</mi></math></span>, the Ramsey number <span><math><mrow><mi>R</mi><mrow><mo>(</mo><mi>H</mi><mo>)</mo></mrow></mrow></math></span> is the smallest positive integer <span><math><mi>n</mi></math></span> such that every 2-edge-colouring of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> yields a monochromatic copy of <span><math><mi>H</mi></math></span>. We write <span><math><mrow><mi>m</mi><mi>H</mi></mrow></math></span> to denote the union of <span><math><mi>m</mi></math></span> vertex-disjoint copies of <span><math><mi>H</mi></math></span>. The members of the family <span><math><mrow><mo>{</mo><mi>m</mi><mi>H</mi><mo>:</mo><mi>m</mi><mo>≥</mo><mn>1</mn><mo>}</mo></mrow></math></span> are also known as <span><math><mi>H</mi></math></span>-tilings. A well-known result of Burr, Erdős and Spencer states that <span><math><mrow><mi>R</mi><mrow><mo>(</mo><mi>m</mi><msub><mrow><mi>K</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>)</mo></mrow><mo>=</mo><mn>5</mn><mi>m</mi></mrow></math></span> for every <span><math><mrow><mi>m</mi><mo>≥</mo><mn>2</mn></mrow></math></span>. On the other hand, Moon proved that every 2-edge-colouring of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>3</mn><mi>m</mi><mo>+</mo><mn>2</mn></mrow></msub></math></span> yields a <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span>-tiling consisting of <span><math><mi>m</mi></math></span> monochromatic copies of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span>, for every <span><math><mrow><mi>m</mi><mo>≥</mo><mn>2</mn></mrow></math></span>. Crucially, in Moon’s result, distinct copies of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span> might receive different colours.</div><div>In this paper, we investigate the analogous questions where the complete host graph is replaced by a graph of large minimum degree. We determine the (asymptotic) minimum degree threshold for forcing a <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span>-tiling covering a prescribed proportion of the vertices in a <span><math><mn>2</mn></math></span>-edge-coloured graph such that every copy of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span> in the tiling is monochromatic. We also determine the largest size of a monochromatic <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span>-tiling one can guarantee in any 2-edge-coloured graph of large minimum degree. These results therefore provide generalisations of the theorems of Moon and Burr–Erdős–Spencer to the setting of dense graphs.</div><div>It is also natural to consider generalisations of these problems to <span><math><mi>r</mi></math></span>-edge-colourings (for <span><math><mrow><mi>r</mi><mo>≥</mo><mn>2</mn></mrow></math></span>) and for <span><math><mi>H</mi></math></span>-tilings (for arbitrary graphs <span><math><mi>H</mi></math></span>). We prove some results in this direction and propose several open questions.</div></div>\",\"PeriodicalId\":50490,\"journal\":{\"name\":\"European Journal of Combinatorics\",\"volume\":\"131 \",\"pages\":\"Article 104228\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0195669825001179\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0195669825001179","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

给定一个图H,拉姆齐数R(H)是最小的正整数n,使得Kn的每一个2边着色产生H的单色副本。我们用mH表示H的m个顶点不相交副本的并集。族的成员{mH:m≥1}也被称为H-tilings。Burr, Erdős和Spencer的一个著名结果表明,当m≥2时,R(mK3)=5m。另一方面,Moon证明了对于每m≥2,K3m+2的每一个2边着色产生一个由m个K3单色副本组成的K3平铺。至关重要的是,在Moon的结果中,不同的K3拷贝可能会收到不同的颜色。本文研究了用大最小度图代替完全主图的类似问题。我们确定了(渐近的)最小度阈值,用于强制K3平铺覆盖2边彩色图中规定比例的顶点,使得平铺中的每个K3副本都是单色的。我们还确定了在任意最小度较大的2边彩色图中所能保证的单色k3平铺的最大尺寸。因此,这些结果提供了Moon定理和Burr-Erdős-Spencer定理对密集图设置的推广。将这些问题推广到r-边着色(对于r≥2)和H-平铺(对于任意图H)也是很自然的。我们在这个方向上证明了一些结果,并提出了几个开放的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ramsey-type problems for tilings in dense graphs
Given a graph H, the Ramsey number R(H) is the smallest positive integer n such that every 2-edge-colouring of Kn yields a monochromatic copy of H. We write mH to denote the union of m vertex-disjoint copies of H. The members of the family {mH:m1} are also known as H-tilings. A well-known result of Burr, Erdős and Spencer states that R(mK3)=5m for every m2. On the other hand, Moon proved that every 2-edge-colouring of K3m+2 yields a K3-tiling consisting of m monochromatic copies of K3, for every m2. Crucially, in Moon’s result, distinct copies of K3 might receive different colours.
In this paper, we investigate the analogous questions where the complete host graph is replaced by a graph of large minimum degree. We determine the (asymptotic) minimum degree threshold for forcing a K3-tiling covering a prescribed proportion of the vertices in a 2-edge-coloured graph such that every copy of K3 in the tiling is monochromatic. We also determine the largest size of a monochromatic K3-tiling one can guarantee in any 2-edge-coloured graph of large minimum degree. These results therefore provide generalisations of the theorems of Moon and Burr–Erdős–Spencer to the setting of dense graphs.
It is also natural to consider generalisations of these problems to r-edge-colourings (for r2) and for H-tilings (for arbitrary graphs H). We prove some results in this direction and propose several open questions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
124
审稿时长
4-8 weeks
期刊介绍: The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信